利用MCP构建一套高性能企业RAG系统,帮助企业快速打造智能知识库应用!

在企业数字化转型浪潮中,如何有效管理和利用内部知识资产已成为关键挑战。随着大型语言模型(LLM)技术的成熟,检索增强生成(RAG)应用正逐渐成为连接企业知识与AI能力的重要桥梁。然而,传统RAG实现常面临检索质量不佳、实时更新困难等痛点问题。

本文将通过实战案例,详细介绍如何基于模型上下文协议(MCP)构建一套高性能企业RAG系统,帮助企业快速打造智能知识库应用。

一、 MCP与传统RAG对比优势

1、传统RAG方案的局限

传统RAG实现通常采用简单的"Embedding+检索+LLM生成"架构,存在以下限制:

  1. 紧耦合架构:检索逻辑与LLM调用紧密耦合,难以独立优化
  2. 单一检索策略:通常只采用向量检索,缺乏多种检索方式结合
  3. 缺乏标准化接口:各实现间接口差异大,难以实现功能复用
  4. 维护成本高:系统升级需要修改大量底层代码

2、MCP解决方案的优势

基于MCP的RAG系统通过标准化协议,将知识检索服务解耦为独立模块,带来以下优势:

  1. 标准化工具调用:MCP提供统一接口规范,降低集成成本

  2. 解耦设计:将模型调用与业务逻辑分离,便于独立升级和维护

  3. 灵活扩展:轻松添加新数据源和功能模块,如混合检索、多模态内容等

  4. 工程实践友好:符合软件工程最佳实践,便于团队协作开发

img

二、项目背景与需求

现代企业面临的知识管理挑战主要表现在以下几个方面:

  • 知识分散:企业文档分布在多个系统中,缺乏统一检索入口
  • 检索效率低:传统关键词检索无法理解语义,难以准确找到所需信息
  • 知识更新慢:知识库更新依赖人工整理,无法及时反映最新情况
  • 使用门槛高:专业术语和复杂查询语法提高了普通员工使用难度

针对这些问题,我们需要设计一个系统满足以下核心需求:

  1. 智能检索:支持自然语言提问,理解问题意图和上下文
  2. 知识自动化处理:实现文档智能拆分、FAQ自动提取
  3. 灵活扩展:支持多种数据源和模型集成
  4. 易于部署与维护:架构简洁,便于技术团队掌握和迭代

三、项目目标

本项目旨在构建一个基于MCP的企业RAG系统,实现以下具体目标:

  1. 技术目标
  • 构建支持MCP协议的知识库服务和客户端
  • 实现文档智能切分、FAQ自动提取功能
  • 支持复杂问题的拆解和混合检索策略
  1. 应用目标
  • 提供统一的知识库管理和检索入口
  • 显著提升企业内部知识检索准确率(目标90%以上)
  • 减少70%知识库维护工作量
  • 支持企业各类文档的智能处理和检索

四、项目系统设计与实现

我们构建的基于MCP的RAG系统主要包含三个核心部分:

  1. 知识库服务(MCP Server):基于Milvus向量数据库实现的后端服务,负责文档存储和检索
  2. 客户端工具(MCP Client):与MCP Server通信的客户端,实现知识库的构建和检索功能
  3. 大模型集成:通过LLM实现文档切分、FAQ提取、问题拆解和回答生成等核心功能

流程图流程图

主要分为两部分:知识库构建和检索。

1、 知识库构建

  • 文本切段: 对文本进行切段,切段后的内容需要保证文本完整性以及语义完整性。

  • 提取 FAQ: 根据文本内容提取 FAQ,作为知识库检索的一个补充,以提升检索效果。

  • 导入知识库: 将文本和 FAQ 导入知识库,并进行 Embedding 后导入向量。

2、 知识检索(RAG)

  • 问题拆解: 对输入问题进行拆解和重写,拆解为更原子的子问题。
  • 检索: 针对每个子问题分别检索相关文本和 FAQ,针对文本采取向量检索,针对 FAQ 采取全文和向量混合检索。
  • 知识库内容筛选: 针对检索出来的内容进行筛选,保留与问题最相关的内容进行参考回答。

相比传统的 Naive RAG,在知识库构建和检索分别做了一些常见的优化,包括 Chunk 切分优化、提取 FAQ、Query Rewrite、混合检索等。

流程

流程图流程图

本Agent整体架构分为三个部分:

  1. 知识库: 内部包含 Knowledge Store 和 FAQ Store,分别存储文本内容和 FAQ 内容,支持向量和全文的混合检索。
  2. MCP Server: 提供对 Knowledge Store 和 FAQ Store 的读写操作,总共提供 4 个 Tools。
  3. **功能实现部分:**完全通过 Prompt + LLM 来实现对知识库的导入、检索和问答这几个功能。

项目结构

项目结构分为两部分:

  1. milvus-mcp-client Python 实现的 Client 端,实现了与大模型进行交互,通过 MCP Client 获取 Tools,根据大模型的反馈调用 Tools 等基本能力。通过 Prompt 实现了知识库构建、检索和问答三个主要功能。
  2. milvus-mcp-server Python 实现的 Server 端,基于 MCP 框架实现的服务,提供了连接 Milvus 向量数据库的接口,支持知识库的存储和检索功能。

五、项目实战:从零搭建MCP-RAG系统

接下来,我们将从环境搭建、服务部署到功能测试,全面介绍如何搭建一个基于MCP的RAG系统。

环境准备

首先,确保满足以下系统要求:

  • Docker 和 Docker Compose
  • 至少 4CPU、4GB内存和20GB磁盘空间
  • 克隆代码git clone -b rag_0.1.1 https://github.com/FlyAIBox/mcp-in-action.git

部署MCP Server

MCP Server基于Milvus向量数据库,提供了知识库的存储和检索功能。

对于需要进行开发或调试的场景,可以选择本地部署:

# 进入项目目录
cd mcp-rag

# 先启动Milvus及依赖服务
docker compose up -d etcd minio standalone

# 创建Python虚拟环境
python -m venv env-mcp-rag
source env-mcp-rag/bin/activate  

# 安装依赖
pip install -r requirements.txt

# 启动服务
python -m app.main

MCP Server的核心API

MCP Server提供四个核心工具,支持知识库的读写操作:

  1. storeKnowledge:存储文档到知识库
  2. searchKnowledge:在知识库中搜索相似文档
  3. storeFAQ:存储FAQ到FAQ库
  4. searchFAQ:在FAQ库中搜索相似问答对

让我们看看这些API的实际实现原理:

async defstore_knowledge(self, content: str, metadata: Dict[str, Any] = None) -> Dict[str, Any]:
    """存储知识内容到Milvus"""
    # 确保服务准备就绪
    awaitself.ready_for_connections()
    
    try:
        knowledge_content = KnowledgeContent(
            content=content,
            metadata=metadata or {}
        )
        self.milvus_service.store_knowledge(knowledge_content)
        return {"status": "success", "message": "Knowledge stored successfully"}
    except Exception as e:
        logger.error(f"Error storing knowledge: {e}")
        return {"status": "error", "message": str(e)}

这段代码展示了storeKnowledge工具的实现:接收文本内容和元数据,创建知识内容对象,然后通过Milvus服务存储到向量数据库中。

基于MCP Client实现RAG客户端

接下来,我们需要实现一个RAG客户端,通过MCP协议与Server通信,实现知识库的构建和查询功能。

1. 知识库构建
  • 文本切分:对长文本进行智能切分,保证语义完整性
  • FAQ提取:从文档自动生成常见问题解答对
  • 向量化存储:将文本片段和FAQ转换为向量并存入Milvus

文本切分代码示例:

def _chunk_text(self, text: str) -> List[str]:
    """将文本分割成chunk,保证语义完整性"""
    chunks = []
    
    # 处理文本小于chunk_size的简单情况
    iflen(text) <= self.chunk_size:
        chunks.append(text)
        return chunks
        
    # 使用重叠策略分割文本
    start = 0
    while start < len(text):
        # 获取chunk结束位置
        end = start + self.chunk_size
        
        # 调整结束位置,避免在句子中间切断
        if end < len(text):
            # 寻找句子边界(句号、问号、感叹号)
            sentence_end = max(
                text.rfind('. ', start, end),
                text.rfind('? ', start, end),
                text.rfind('! ', start, end)
            )
            
            # 如果找到句子结束,使用它作为chunk结束
            if sentence_end > start:
                end = sentence_end + 1# 包含句号
        
        # 添加chunk
        chunks.append(text[start:min(end, len(text))])
        
        # 移动开始位置到下一个chunk,考虑重叠
        start = end - self.chunk_overlap
        
        # 确保进度
        if start >= len(text) or start <= 0:
            break
            
    return chunks

FAQ提取,通过LLM实现:

async def_extract_faqs(self, text: str) -> List[Dict[str, str]]:
    """从文本中提取FAQ"""
    # 对过长文本进行分块处理
    iflen(text) > 8000:
        chunks = self._chunk_text(text)
        faqs = []
        for chunk in chunks:
            chunk_faqs = awaitself._extract_faqs(chunk)
            faqs.extend(chunk_faqs)
        return faqs
        
     # FAQ提取的提示模板
     system_prompt = 
        """你是一位专业的知识提取专家。你的任务是从文本中提取可能的常见问题(FAQ)。
        这些问题应该是用户可能会问的关于文本内容的自然问题,答案应该能在文本中找到。
        提取的FAQ应该覆盖文本中最重要的概念和信息。

        请遵循以下规则:
        1. 每个FAQ由一个问题和一个答案组成
        2. 问题应该简短明了,直接针对主题
        3. 答案应该全面但简洁,提供文本中的相关信息
        4. 提取的FAQ数量应该基于文本长度和内容丰富度,通常不超过10个
        5. 确保提取的FAQ相互之间不重复
        6. 按照重要性排序,最重要的问题应该放在前面

        输出格式必须是一个JSON数组,每个FAQ是一个包含"question"和"answer"字段的对象,例如:
        [
          {
            "question": "问题1?",
            "answer": "答案1"
          },
          {
            "question": "问题2?",
            "answer": "答案2"
          }
        ]
        只输出JSON格式,不要有任何其他文本。"""
    user_prompt = f"""从以下文本中提取常见问题(FAQ):
    ```
    {text}
    ```
    请提取最相关、最有价值的FAQ,并按JSON格式返回。"""


   
   # 使用LLM提取FAQ
   response = self.llm_client.sync_generate(
       prompt=text,
       system_prompt=system_prompt,
       temperature=0.3
   )
   
   # 解析LLM响应获取FAQ
   # ...
2. 知识检索优化

与传统RAG不同,我们在检索环节引入了问题拆解、混合检索和结果筛选三个优化机制。

  • • 问题拆解:将复杂问题拆解为多个子问题
  • • 混合检索:同时检索文本库和FAQ库,提高召回率
  • • 结果筛选:对检索结果进行排序和筛选,优先保留高质量内容

问题拆解示例:

async def_decompose_question(self, question: str) -> List[str]:
    """将复杂问题分解为更简单的子问题"""
    system_prompt = 
    """你是一位问题分析专家。你的任务是将复杂问题分解为更简单的子问题,以便更好地检索相关信息。

    请遵循以下规则:
    1. 分析用户的问题,识别其中包含的不同方面或概念
    2. 将复杂问题拆分成更简单、更具体的子问题
    3. 确保子问题覆盖原始问题的所有关键方面
    4. 提供2-4个子问题,具体数量取决于原始问题的复杂度
    5. 子问题应该是明确的、有针对性的
    6. 子问题之间应该尽量避免重复

    输出格式必须是一个JSON数组,包含所有子问题的字符串,例如:
    ["子问题1", "子问题2", "子问题3"]

    如果原始问题已经足够简单,不需要分解,则返回只包含原始问题的JSON数组:
    ["原始问题"]

    只输出JSON格式,不要有任何其他文本。"""

    user_prompt = f"""请将以下问题分解为更简单的子问题以便检索:{question}"""
    
    # 使用LLM生成子问题
    response = self.llm_client.sync_generate(
        prompt=user_prompt,
        system_prompt=system_prompt,
        temperature=0.3
    )
    
    # 解析响应获取子问题列表
    # ...

结果筛选与生成回答的关键代码:

async def_filter_context(self, question: str, context_items: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
    """根据问题相关性筛选上下文"""
    # 简单筛选:去重和截断
    seen_contents = set()
    filtered_items = []
    
    # 优先处理FAQ类型
    faq_items = [item for item in context_items if item["type"] == "faq"]
    knowledge_items = [item for item in context_items if item["type"] == "knowledge"]
    
    # 先处理FAQ项
    for item in faq_items:
        # 去重处理
        # ...
    
    # 再处理知识项
    for item in knowledge_items:
        # 去重处理
        # ...
    
    # 限制上下文项总数
    max_context_items = 6
    iflen(filtered_items) > max_context_items:
        filtered_items = filtered_items[:max_context_items]
        
    return filtered_items

实际效果展示

部署完成后,让我们看看系统的实际运行效果:

1. 知识库构建
python -m app.main build --file test.md --title "RAG基本介绍" --author "企业知识库" --tags "LLM,RAG,知识库"

执行结果:

2025-05-11 14:50:16 | INFO | app.knowledge_builder:build_from_text:52 - Split text into 2 chunks
2025-05-11 14:50:59 | INFO | app.knowledge_builder:build_from_text:72 - Extracted 8 FAQs from text
2025-05-11 14:51:00 | INFO | __main__:build_knowledge_base:48 - Stored 2/2 chunks to knowledge base
2025-05-11 14:51:00 | INFO | __main__:build_knowledge_base:50 - Extracted and stored 8 FAQs

借助attu查看知识库构建结果借助attu查看知识库构建结果

2. 知识检索问答
python -m app.main query --question "RAG相比企业传统的知识库有什么优势和缺点"

执行结果:

2025-05-11 15:01:46 | INFO | app.knowledge_retriever:query:39 - Decomposed question into 4 sub-questions
2025-05-11 15:01:47 | INFO | app.knowledge_retriever:query:67 - Filtered 28 context items to 6

================================================================================
问题: RAG相比企业传统的知识库有什么优势和缺点
--------------------------------------------------------------------------------
回答: 检索增强生成(RAG)是一种通过整合训练数据之外的权威知识库来优化大型语言模型(LLM)输出的技术。其核心在于允许LLM在生成响应前动态访问特定领域或组织的内部知识库,例如实时数据源、文档或专业数据库,而无需对模型本身进行重新训练。这种方式通过引入外部信息,显著提升了生成内容的相关性、准确性及实用性,同时保留了LLM的灵活性和泛化能力。
================================================================================

知识检索问答知识检索问答

实施建议与最佳实践

根据实际项目经验,我们总结了以下最佳实践:

  1. 文档处理策略
  • 合理设置文本切分的大小(1000-1500字符)和重叠率(200-300字符)
  • 根据文档类型调整切分策略,技术文档和叙述性文档要区别对待
  • 保留文档原始格式信息作为元数据,提升检索精度
  1. 检索优化技巧
  • 使用混合检索(语义+关键词)提高召回率
  • 在问题拆解环节设置合理的子问题数量(2-4个)
  • 限制总上下文数量(5-8个)避免信息过载
  1. 系统集成要点
  • 选择合适的向量模型
  • 针对实时更新需求设计增量索引策略
  • 添加监控和日志记录,及时发现并解决问题

总结与展望

基于MCP实现的RAG系统代表了知识库建设的新方向。通过模型上下文协议,我们不仅解决了传统RAG系统中的诸多痛点,还为企业提供了一种低成本、高效率的知识管理方案。

未来,随着大模型技术的进步和MCP标准的完善,我们可以期待更多创新功能的出现:

  • 多模态内容的支持(图像、音频、视频等)
  • 更精准的实时知识更新机制
  • 基于用户反馈的自适应检索优化

对于企业而言,现在正是开始探索和应用这一技术的最佳时机。通过MCP-RAG,企业可以充分挖掘自身知识资产的价值,为员工和客户提供更智能、更精准的信息服务。

那么,如何系统的去学习大模型LLM?

作为一名从业五年的资深大模型算法工程师,我经常会收到一些评论和私信,我是小白,学习大模型该从哪里入手呢?我自学没有方向怎么办?这个地方我不会啊。如果你也有类似的经历,一定要继续看下去!这些问题啊,也不是三言两语啊就能讲明白的。

所以我综合了大模型的所有知识点,给大家带来一套全网最全最细的大模型零基础教程。在做这套教程之前呢,我就曾放空大脑,以一个大模型小白的角度去重新解析它,采用基础知识和实战项目相结合的教学方式,历时3个月,终于完成了这样的课程,让你真正体会到什么是每一秒都在疯狂输出知识点。

由于篇幅有限,⚡️ 朋友们如果有需要全套 《2025全新制作的大模型全套资料》,扫码获取~
在这里插入图片描述

👉大模型学习指南+路线汇总👈

我们这套大模型资料呢,会从基础篇、进阶篇和项目实战篇等三大方面来讲解。
在这里插入图片描述
在这里插入图片描述

👉①.基础篇👈

基础篇里面包括了Python快速入门、AI开发环境搭建及提示词工程,带你学习大模型核心原理、prompt使用技巧、Transformer架构和预训练、SFT、RLHF等一些基础概念,用最易懂的方式带你入门大模型。
在这里插入图片描述

👉②.进阶篇👈

接下来是进阶篇,你将掌握RAG、Agent、Langchain、大模型微调和私有化部署,学习如何构建外挂知识库并和自己的企业相结合,学习如何使用langchain框架提高开发效率和代码质量、学习如何选择合适的基座模型并进行数据集的收集预处理以及具体的模型微调等等。
在这里插入图片描述

👉③.实战篇👈

实战篇会手把手带着大家练习企业级的落地项目(已脱敏),比如RAG医疗问答系统、Agent智能电商客服系统、数字人项目实战、教育行业智能助教等等,从而帮助大家更好的应对大模型时代的挑战。
在这里插入图片描述

👉④.福利篇👈

最后呢,会给大家一个小福利,课程视频中的所有素材,有搭建AI开发环境资料包,还有学习计划表,几十上百G素材、电子书和课件等等,只要你能想到的素材,我这里几乎都有。我已经全部上传到CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
在这里插入图片描述
相信我,这套大模型系统教程将会是全网最齐全 最易懂的小白专用课!!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值