这个代码很早就写了,这次发这篇博客主要是希望能够有更多人提意见并参与开发。以下文字主体部分是AI结合我的代码帮我介绍的。
写在前面
每个科研工作者都经历过的一个场景:正在专注地阅读文献,突然发现一篇重要的相关工作需要引用。于是不得不停下来,打开DBLP,搜索文章,点击多次才能找到BibTeX,再复制粘贴到文献管理软件中。这个过程虽然简单,但当你一天需要重复几十次时,就会深刻体会到它有多么影响工作效率和思维连贯性。
Greasyfork代码链接:选择文本并自动获取BibTex到剪切板
Github仓库链接:IoTS-P/Get-Bibtex-from-Google-Scholar: 根据关键词列表谷歌学术搜索,批量获取对应的第一个Bibtex。
使用方式
-
点击Greasyfork安装脚本
-
选中任意文字并按左下角的按钮
-
允许访问跨源资源,可以选择总是允许(也就是访问DBLP这个网站):
-
最后,Bibtex将出现在剪切板中:
开发动机
作为一个程序员出身的研究生,我深深理解"工具创造效率,效率创造时间"这句话的分量。在写Related Work章节时,我发现自己大量的时间都浪费在了文献引用的机械操作上。一个下午可能要找几十篇文献的引用信息,如果每篇都要手动操作,那么仅仅是复制粘贴就要花费将近一个小时。这对于本就紧张的科研时间来说,实在是太奢侈了。
解决方案
经过深入思考,我开发了一个简单但高效的浏览器脚本。它只做一件事:当你选中文献标题并点击按钮时,自动从DBLP获取BibTeX并复制到剪贴板。看似简单的功能,却能显著提升工作效率:
- 无需切换窗口:在任何网页上直接选中文字即可获取引用信息
- 一键式操作:从选中到获取BibTeX只需一次点击
- 即时反馈:操作成功后会有清晰的提示信息
- 多语言支持:自动适配中英文系统界面
技术实现细节
作为一个技术爱好者,我在开发这个工具的过程中也获得了不少收获。以下是一些关键的技术点:
跨域请求处理
在获取DBLP数据时,最大的挑战是跨域请求的限制。通过使用Tampermonkey提供的GM_xmlhttpRequest API,我成功实现了跨域数据获取,同时保证了请求的安全性和可靠性。具体实现包括:
- 设计合理的请求头信息
- 实现错误重试机制
- 优化请求性能
异步操作优化
为了提供流畅的用户体验,所有的网络请求都采用异步操作处理。这涉及到:
- Promise链式调用的设计
- 异步错误处理机制
- 状态反馈的实现
用户界面设计
虽然是一个小工具,但我依然注重用户体验:
- 最小化界面干扰:只在左下角显示一个简单的按钮
- 清晰的状态反馈:使用Toast提示操作结果
- 可配置的界面元素:支持显示/隐藏功能按钮
很简单的脚本,如果有不知道怎么写出来的可以看我以前写的一篇博客:
【MOOC】JS脚本|便于复制粘贴中国大学MOOC网站的测试题和选项
或者配合我做的如何写/用浏览器脚本的视频教程使用:【浏览器脚本入门】①下载油猴_哔哩哔哩_bilibili
这个脚本写是因为我本来写了个Python版本的,但是感觉写个浏览器脚本也会挺方便的,就干脆写了一个。
用途是直接检索鼠标选中的文本,返回第一个搜索结果的Bibtex到剪切板上,方便查BibTex,避免去卡得要死的DBLP那边去搜东西。
未来展望
这个工具目前虽然实现了基础功能,但我已经规划了更多的改进方向:
- 批量处理功能:支持一次性处理多篇文献的引用信息
- 更多数据源支持:除DBLP外,添加Google Scholar等其他学术数据库的支持
- 引用格式扩展:支持更多的引用格式,如MLA、APA等
- 智能匹配优化:提高文献搜索的准确性和效率
技术分享与开源
本项目采用GPL-3.0协议开源,这意味着你可以自由使用、修改和分发这个工具。选择开源的原因很简单:我希望这个工具能帮助到更多的研究者,同时也希望能通过社区的力量使它变得更好。
Greasyfork代码链接:选择文本并自动获取BibTex到剪切板
Github仓库链接:IoTS-P/Get-Bibtex-from-Google-Scholar: 根据关键词列表谷歌学术搜索,批量获取对应的第一个Bibtex。
写在最后
科研之路漫长而艰辛,但我相信,通过不断改进工具和方法,我们可以让这个过程变得更加高效和愉快。如果你也在为文献引用管理而烦恼,不妨试试这个工具。同时,我也期待听到你的使用反馈和改进建议,让我们一起把这个工具做得更好。
因为我深信:工具的进步,终将转化为科研效率的提升。而每一分节省下来的时间,都可以用来思考更有价值的研究问题。
本账号所有文章均为原创,欢迎转载,请注明文章出处:https://shandianchengzi.blog.csdn.net/article/details/144936343。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。