题目链接:94. 二叉树的中序遍历
题目:
给定一个二叉树的根节点 root ,返回 它的 中序 遍历 。
示例 1:
输入:root = [1,null,2,3]
输出:[1,3,2]
示例 2:
输入:root = []
输出:[]
示例 3:
输入:root = [1]
输出:[1]
提示:
- 树中节点数目在范围 [0, 100] 内
- -100 <= Node.val <= 100
进阶: 递归算法很简单,你可以通过迭代算法完成吗?
思路和算法:
本题使用递归法会比较容易些,明确递归三要素就可以很快的解决,具体三要素的讲解见:叫你写递归——递归三部曲。
在本题中,三要素是指:
(1)确定递归函数的参数和返回值:因为要打印出后序遍历节点的数值,所以参数里需要传入vector在放节点的数值,除了这一点就不需要在处理什么数据也不需要什么返回值,所以递归函数返回类型可以敲定为void;
即:void traversal(TreeNode* cur, vector<int>& res) {}
(2)确定终止条件:在递归的过程中,什么才能算递归结束了呢,当然是当前遍历的节点是空,那么本层递归就要结束了,所以,如果当前遍历的这个节点是空,直接return;
即:if (!cur) return;
(3)确定单层递归的逻辑:后序遍历是左中右的顺序,所以在单层递归的逻辑,是先递归左子二叉树,然后再取中节点的数值放入结果数组,最后再递归右子二叉树;即:
traversal(cur->left, res); //左
res.push_back(cur->val); //中
traversal(cur->right, res); //右
代码(c++):
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
//递归
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res;
traversal(root, res);
return res;
}
private:
void traversal(TreeNode* cur, vector<int>& res) {
if (!cur) return; //当前节点为空为终止条件
traversal(cur->left, res); //左
res.push_back(cur->val); //中
traversal(cur->right, res); //右
}
};
关于进阶里的问题,采用迭代法。
代码(c++):
在使用迭代法写中序遍历,就需要借用指针的遍历来帮助访问节点,栈则用来处理节点上的元素。
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode() : val(0), left(nullptr), right(nullptr) {}
* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}
* };
*/
//迭代
class Solution {
public:
vector<int> inorderTraversal(TreeNode* root) {
vector<int> res; //结果数组
stack<TreeNode*> stk;
TreeNode* cur = root;
//如果栈内有数据或者当前节点不为空(指针用来辅助遍历)
while (cur || !stk.empty()) {
if (cur) { //指针指向叶子节点
stk.push(cur);
cur = cur->left; //指针遍历左子二叉树 //左
}
else { //指针遍历到叶子节点
cur = stk.top();
res.push_back(cur->val); //将栈顶元素放入结果数组 //中
stk.pop(); //弹出栈顶元素
cur = cur->right; //右
}
}
return res;
}
};