最全的图像拼接代码

本文详细介绍了如何使用Python和OpenCV进行图像拼接,包括基于OpenCV的panorama stitching步骤、利用cv2.createStitcher()和cv2.Stitcher_create()的方法,以及实时全景图像构建。内容涵盖了不同代码示例、论文参考和GitHub资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

我总结图像处理网站pyimagesearch上的图像拼接代码,并附有详细的解释。

pyimagesearch网站链接

1. OpenCV panorama stitching,2016年1月11日

链接1

GitHub中一样的代码: samggggflynn/panorama-stitchingkaranvivekbhargava/PanoramaStichingSIFT-master

链接2
链接3

内容:

​ 使用Python和OpenCV进行图像拼接和全景图构建。给定两张图片,将它们“缝合”在一起形成一个简单的全景图。

​ 介绍了全景图像拼接的4个步骤:

​ 步骤1:从两个输入图像中检测关键点(DoG, Harris等)和提取局部不变描述符(SIFT, SURF等)。

​ 步骤2:匹配两个图像之间的描述符。

​ 步骤3:使用RANSAC算法估计我们匹配的特征向量的单应矩阵。

​ 步骤4:使用从步骤3得到的单应矩阵应用翘曲变换。

代码:在panorama.py中封装上述四个步骤,并且定义了一个用于构造全景图的Stitcher类。在stitch.py中,我们调用panorama.py中的Stitcher类,完成拼接。

panorama.py

# import the neccessary packages
import numpy as np
import imutils
import cv2


class Stitcher:
    def __init__(self):
        # define if we are using OpenCV v3.x
        self.isv3 = imutils.is_cv3(or_better=True)

    def stitch(self, images, ratio=0.75, reprojThresh=4.0, showMatches=False):
        # unpack the images, then detect keypoints and extract
        # local invariant descriptors from them
        (imageB, imageA) = images
        (kpsA, featuresA) = self.detectAndDescribe(imageA)
        (kpsB, featuresB) = self.detectAndDescribe(imageB)

        # match features between the two images
        M = self.matchKeypoints(kpsA, kpsB,
                                featuresA, featuresB, ratio, reprojThresh)

        # if the match is None, then there aren't enough matched
        # keypoints to create a panorama
        if M is None:
            return None

        # otherwise, apply a perspective warp to stitch the images
        # together
        (matches, H, status) = M
        result = cv2.warpPerspective(imageA, H,
                                     (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
        result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB

        # check to see if the keypoint matches should be visualized
        if showMatches:
            vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches,
                                   status)

            # return a tuple of the stitched image and the
            # visualization
            return (result, vis)

        # return the stitched image
        return result

    def detectAndDescribe(self, image):
        # convert the image to grayscale
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # check to see if we are using OpenCV 3.X
        if self.isv3:
            # detect and extract features from the image
            descriptor = cv2.xfeatures2d.SIFT_create()
            (kps, features) = descriptor.detectAndCompute(image, None)

        # otherwise, we are using OpenCV 2.4.X
        else:
            # detect keypoints in the image
            detector = cv2.FeatureDetector_create("SIFT")
            kps = detector.detect(gray)

            # extract features from the image
            extractor = cv2.DescriptorExtractor_create("SIFT")
            (kps, features) = extractor.compute(gray, kps)

        # convert the keypoints from KeyPoint objects to NumPy
        # arrays
        kps = np.float32([kp.pt for kp in kps])

        # return a tuple of keypoints and features
        return (kps, features)

    def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB,
                       ratio, reprojThresh):
        # compute the raw matches and initialize the list of actual
        # matches
        matcher = cv2.DescriptorMatcher_create("BruteForce")
        rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
        matches = []

        # loop over the raw matches
        for m in rawMatches:
            # ensure the distance is within a certain ratio of each
            # other (i.e. Lowe's ratio test)
            if len(m) == 2 and m[0].distance < m[1].distance * ratio:
                matches.append((m[0].trainIdx, m[0].queryIdx))

        # computing a homography requires at least 4 matches
        if len(matches) > 4:
            # construct the two sets of points
            ptsA = np.float32([kpsA[i] for (_, i) in matches])
            ptsB = np.float32([kpsB[i] for (i, _) in matches])

            # compute the homography between the two sets of points
            (H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC,
                                             reprojThresh)

            # return the matches along with the homograpy matrix
            # and status of each matched point
            return (matches, H, status)

        # otherwise, no homograpy could be computed
        return None

    def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
        # initialize the output visualization image
        (hA, wA) = imageA.shape[:2]
        (hB, wB) = imageB.shape[:2]
        vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
        vis[0:hA, 0:wA] = imageA
        vis[0:hB, wA:] = imageB

        # loop over the matches
        for ((trainIdx, queryIdx), s) in zip(matches, status):
            # only process the match if the keypoint was successfully
            # matched
            if s == 1:
                # draw the match
                ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
                ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
                cv2.line(vis, ptA, ptB, (0, 255, 0), 1)

        # return the visualization
        return vis

stitch.py

# run code use : python stitch.py --first images/img9.jpg --second iamges/img10.jpg
# import the necessary packages
from panorama import Stitcher
import argparse
import imutils
import cv2

# construct the argument parse and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-f", "--first", required=True, help="path to the first image")
ap.add_argument("-s", "--second", required=True, help="path to the second image")
args = vars(ap.parse_args())

# load the two images and resize them to have a width of 400 pixels
# (for faster processing)
imageA = cv2.imread(args["first"])
imageB = cv2.imread(args["second"])
imageA = imutils.resize(imageA, width=400)
imageB = imutils.resize(imageB, width=400)

# stitch the images together to create a panorama
stitcher = Stitcher()
(result, vis) = stitcher.stitch([imageA, imageB], showMatches=True)

# to write the images
cv2.imwrite("Matched_points_mural.jpg", vis)
cv2.imwrite("Panorama_image_mural.jpg", result)

cv2.waitKey(0)
cv2.destroyAllWindows()

# show the images
cv2.imshow("Image A", imageA)
cv2.imshow("Image B", imageB)
cv2.imshow("Keypoint Matches", vis)
cv2.imshow("Result", result)
cv2.waitKey(0)

运行代码:

python stitch.py --first images/bryce_left_01.png –second images/bryce_right_01.png

2. Image Stitcing with OpenCV and Python, 2018年12月17日==*==

网址:https://www.pyimagesearch.com/2018/12/17/image-stitching-with-opencv-and-python/

​ 中文翻译版:https://blog.csdn.net/learning_tortosie/article/details/85083825?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522162683446416780255241191%2522%252C%2522scm%2522%253A%252220140713.130102334.pc%255Fall.%2522%257D&request_id=162683446416780255241191&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2allfirst_rank_v2~rank_v29-4-85083825.first_rank_v2_pc_rank_v29&utm_term=cv2.createStitcher%28%29+%E5%92%8C+cv2.Stitcher_create%28%29+&spm=1018.2226.3001.4187

内容:

​ 学习如何使用Python、OpenCV和cv2.createStitcher以及 cv2.Stitcher_create来执行图像拼接。使用这个代码,可以将多个图像拼接在一起,创建一个拼接图像的全景。

图像拼接算法步骤图:https://www.pyimagesearch.com/wp-content/uploads/2018/12/image_stitching_opencv_pipeline.png

代码参考论文:Automatic Panorama Image Stitching with Invariant Features,论文地址:http://matthewalunbrown.com/papers/ijcv2007.pdf

​在GitHub上实现这篇论文的代码如下:avinashk442/Panoramic-Image-Stitching-using-invariant-features

​网址:https://github.com/avinashk442/Panoramic-Image-Stitching-using-invariant-features

论文介绍:

​ 不同于以往的图像拼接算法对输入图像的顺序敏感,Automatic Panorama Image Stitching with Invariant Features方法鲁棒性更强,对以下情况不敏感:

​ · 图片的顺序

​ · 方向的图片

​ · 光照变化

​ · 噪声图像不是全景图的一部分

代码:

image_stitching_simple.py

# run code
# python image_stitching_simple.py --images images/scottsdale --output output.png
# import the necessary packages
from imutils import paths
import numpy as np
import argparse
import imutils
import cv2

# construct the argument parser and parse the arguments
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--images", type=str, required=True,
                help="path to input directory of images to stitch")
ap.add_argument("-o", "--output", type=str, required=True,
                help="path to the output image")
args = vars(ap.parse_args())

# grab the paths to the input images and initialize our images list
print("[INFO] loading images...")
imagePaths = 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值