高精度算法
在计算过程中遇到数字计算时的位数很大,如参与运算的数字的位数小于1e6时,即使是longlong也无法存储,这时我们就要用到高精度算法,即用数组来存储大数,数字每一位的运算过程都转化为数组元素的运算,最终运算结果也存在数组中。总的来说,高精度算法分为两步:
① 大数的存储
② 位运算的处理
1.数的存储
大数的存储方法是先以字符串的方式读入数字,再逆序存入数组中,如用num[]数组存放数123456,则num[0]存放个位数字6,num[1]存放十位数字5,依此类推;
void init()//传入数组
{
string s;
int num[];
cin>>s;
for(int i=s.size()-1;i>=0;i--)
num[i]=a[i]-'0';//逆序存入数组中,存入时减去字符a
}
2.高精度加法
高精度加法对于每一位的处理类似于竖式计算,因为每一位计算时只有向前进位或不进位两种情况,所以我们用一个变量存储当前位的进位情况,并加到下一位的运算中。
AcWing791.高精度加法
//791.高精度加法
#include <bits/stdc++.h>
using namespace std;
const int N=1e6+10;
//C=A+B
vector<int> add(vector<int> &A, vector<int> &B)
{
vector<int> C;
int t=0;//进位
for(int i=0;i<A.size() || i<B.size();i++){
if(i<A.size()) t+=A[i];
if(i<B.size()) t+=B[i];
C.push_back(t%10);//计算加法计算结果的尾数
t/=10;//计算进位
}
if(t) C.push_back(1);//最后一位若还有进位,则计算结果还有最高位
return C;
}
int main()
{
string a,b;
vector<int> A,B;
cin>>a>>b;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');//数字按字符串方式逆序存入数组中
for(int i=b.size()-1;i>=0;i--) B.push_back(b[i]-'0');
auto C=add(A,B);//auto自动判断变量类型
for(int i=C.size()-1;i>=0;i--) printf("%d",C[i]);
return 0;
}
2.高精度减法
高精度减法的关键在于借位的处理,要先带着上一位的借位减,不够减则还要向上一位借位。
除此之外,减法还要考虑被减数与减数的大小关系,以及最后差的前导0问题。
#include <bits/stdc++.h>
using namespace std;
bool cmp(vector<int> &A,vector<int> &B)
{//比较算法,保证A>=B,若不满足将A和B互换
if(A.size()!=B.size()) return A.size()>B.size();//先比较位数,位数大的数更大
for(int i=A.size()-1;i>=0;i--)//再按位比较,比较到存在大小关系的位为止
if(A[i]!=B[i])
return A[i]>B[i];
return true;//比较到最后则表示A=B,也满足A>=B的条件
}
//C=A-B
vector<int> sub(vector<int> &A, vector<int> &B)
{
vector<int> C;
for(int i=0,t=0;i<A.size();i++){
t=A[i]-t;//t是借位,先减去上一位的借位
if(i<B.size()) t-=B[i];
C.push_back((t+10)%10);//减去后若t<0,则尾数为t+10
if(t<0) t=1;//减去后t<0时向前一位借位
else t=0;
}
//去除前导0
while(C.size()>1 && C.back()==0) C.pop_back();
return C;
}
int main()
{
string a,b;
vector<int> A,B;
cin>>a>>b;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');//数字按字符串方式逆序存入数组中
for(int i=b.size()-1;i>=0;i--) B.push_back(b[i]-'0');
if(cmp(A,B)){//A>=B时正常输出
auto C=sub(A,B);//auto自动判断变量类型
for(int i=C.size()-1;i>=0;i--) printf("%d",C[i]);
}
else{//A<B时交换A,B做减法,并在前加负号
auto C=sub(B,A);
printf("-");
for(int i=C.size()-1;i>=0;i--) printf("%d",C[i]);
}
return 0;
}
3.高精度乘法
高精度乘法用另一变量t来存储乘法运算的中间结果,只留最后一位,剩余的进到前一位。注意当运算结果为0时,0的位数与大数位数一致,要注意去掉多余的前导0。
#include <bits/stdc++.h>
using namespace std;
//C=A*b
vector<int> mul(vector<int> A,int b)
{
vector<int> C;
int t=0;
for(int i=0;i<A.size() || t;i++){
if(i<A.size()) t+=A[i]*b;//t保存乘法的中间结果,最后一位留在本位,其余进到前一位
C.push_back(t%10);
t/=10;
}
while(C.size()>1 &&C.back()==0) C.pop_back();//结果为0时要去掉多余的前导0,只留一位0
return C;
}
int main()
{
string a;
int b;
cin>>a>>b;
vector<int> A;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
auto C=mul(A,b);
for(int i=C.size()-1;i>=0;i--) printf("%d",C[i]);
return 0;
}
4.高精度除法
高精度除法的关键在于余数的处理,每一次与除数相除后得到的余数都要与下一位的被除数完成拼接,等价于余数乘10再加上下一位。
#include <bits/stdc++.h>
using namespace std;
//C=A/b 商得C 余数得r
vector<int> div(vector<int> &A,int b,int &r)
{
vector<int> C;
r=0;//余数
for(int i=A.size()-1;i>=0;i--){
r=r*10+A[i];
C.push_back(r/b);
r%=b;
}
reverse(C.begin(),C.end());
while(C.size()>1 && C.back()==0) C.pop_back();//将数反转,然后删除前导0
return C;
}
int main()
{
string a;
int b;
cin>>a>>b;
vector<int> A;
for(int i=a.size()-1;i>=0;i--) A.push_back(a[i]-'0');
int r;
auto C=div(A,b,r);
for(int i=C.size()-1;i>=0;i--) printf("%d",C[i]);
cout<<endl<<r<<endl;
return 0;
}
这里的高精度乘除法都是大数与一个小数(能用int表示的整数b)的运算,考虑到两个大数的乘除法一般并不常见,所以以后有空的话再来添加吧(摸了)。