sklearn学习
张张同学!
其实路上风再大也没有关系。
展开
-
sklearn学习(逻辑回归)
逻辑回归1 概述1.1 名为“回归”的分类器优点:1.3 sklearn中的逻辑回归逻辑回归相关的类 说明其他会涉及的类 说明2.1 二元逻辑回归的损失函数penalty2.2 正则化:重要参数penalty & C2.2 梯度下降:重要参数max_iter1 概述1.1 名为“回归”的分类器回归树,随机森林的回归,无一例外他们都是区别于分类算法们,用来处理和预测连续型标签的算法。然而逻辑回归,是一种名为“回归”的线性分类器,其本质是由线性回归变化而来的,一种广泛使用于分类问题中的广义回归算法原创 2020-08-14 16:45:06 · 1286 阅读 · 0 评论 -
sklearn学习(降维算法PCA和SVD)
降维算法PCA和SVD1 概述1.1 从什么叫“维度”说开来sklearn中的降维算法2 PCA与SVD2.1 降维究竟是怎样实现?2.2.1 迷你案例:高维数据的可视化6. 探索降维后的数据7. 选择最好的n_components:累积可解释方差贡献率曲线2.2.2 最大似然估计自选超参数2.2.3 按信息量占比选超参数2.3 重要参数svd_solver2.3.1 PCA中的SVD哪里来?1 概述1.1 从什么叫“维度”说开来对于数组和Series来说,维度就是功能shape返回的结果,shape原创 2020-08-12 22:29:00 · 3207 阅读 · 0 评论 -
sklearn学习(数据预处理和特征工程)
数据预处理和特征工程数据挖掘的五大流程:1.2 sklearn中的数据预处理和特征工程2 数据预处理 Preprocessing & Impute2.1 数据无量纲化2.3 处理分类型特征:编码与哑变量参数 含义&输入sklearn中的数据预处理和特征工程1 概述1.1 数据预处理与特征工程1.2 sklearn中的数据预处理和特征工程2 数据预处理 Preprocessing & Impute2.1 数据无量纲化2.2 缺失值2.3 处理分类型特征:编码与哑变量2原创 2020-08-12 16:14:05 · 789 阅读 · 0 评论 -
sklearn实例(随机森林在乳腺癌数据上的调参)
随机森林在乳腺癌数据上的调参1. 导入需要的库2. 导入数据集,探索数据3. 进行一次简单的建模,看看模型本身在数据集上的效果4. 随机森林调整的第一步:无论如何先来调n_estimators5. 在确定好的范围内,进一步细化学习曲线6. 为网格搜索做准备,书写网格搜索的参数7. 开始按照参数对模型整体准确率的影响程度进行调参,首先调整max_depth8. 调整max_features9. 调整min_samples_leaf10. 尝试min_samples_split11. 最后尝试一下criteri原创 2020-08-07 10:16:20 · 1741 阅读 · 0 评论 -
sklearn学习(集成算法:随机森林)
随机森林树一.概述【1】集成算法概述1.概念与应用2.集成算法的目标3.其他定义【2】sklearn中的集成算法1.sklearn中的集成算法模块ensemble(1)类与类的功能2.复习:sklearn中的决策树3.sklearn的基本建模流程二.RandomForestClassifier【1】重要参数1.控制基评估器的参数2.n_estimators【2】建立一片森林1. 导入我们需要的包2. 导入需要的数据集3. 复习:sklearn建模的基本流程4. 画出随机森林和决策树在十组交叉验证下的效果对比原创 2020-08-05 11:14:42 · 1945 阅读 · 0 评论 -
sklearn学习2(回归树)
回归树重要参数,属性和接口【1】criterion【2】交叉验证cross_val_score【3】实例:一维回归的图像绘制重要参数,属性和接口class sklearn.tree.DecisionTreeClassifier(criterion='mse' ,splitter="random" ,max_depth=None原创 2020-07-30 11:11:07 · 1241 阅读 · 0 评论 -
scikit-klearn学习(决策树:分类树)
决策树一.认识决策树【1】什么是决策树?【2】什么地方应用?【3】是如何工作的?【4】核心解决两个问题二.sklearn中的决策树【1】模块【2】流程三.分类树【1】重要参数1.criterion2.建立一个树13. 建立一个树2一.认识决策树【1】什么是决策树?决策树是一种非参数的有效监督学习的方法,他能过从一系列有特征和标签的数据中 总结出来决策规则,并用树状图的结构来呈现这些规则,以解决分类和回归问题。【2】什么地方应用?尤其是在以树模型为核心的各种集成算法中有广泛应用【3】是如何工作的?原创 2020-07-28 11:52:47 · 1931 阅读 · 0 评论