【线段树上dp】Codeforces 750 E New Year and Old Subsequence

题目链接:https://codeforces.com/contest/750/problem/E

题意

给一个1~n的数字串,每次询问在区间【l,r】之间至少要删除几个字符使得剩下的的数中有2017但是没有2016

思路

我们会发现,这个问题由两个子问题构成:

  1. 对于一个串,我们要如何来计算需要删除几个字符
  2. 如何将这个问题转化成一个区间查询的问题

问题1解决

  1. 显然这个问题要用dp来解决,但是怎么解决呢
  2. 这个地方用到了矩阵和floyd最短路的转移
  3. 假设说这个问题求的是1~n的字符串的转移,那么代码如下
/*在这里,我们定义空状态为0,2为1,20为2,201为3,2017为4
mat[x]的矩阵m[i][j]表示当前在x位置上要从i状态转移到j状态需要删除多少字符*/

struct Matrice
{
    int m[5][5];
    void init(){memset(m,inf,sizeof(m));}
    Matrice operator *(const Matrice a) const
    {
        Matrice res;
        res.init();
        /*floyd最短路转移*/
        for(int k=0;k<5;k++)
         for(int i=0;i<5;i++)
          for(int j=0;j<5;j++)
           res.m[i][j]=min(res.m[i][j],m[i][k]+a.m[k][j]);
        return res;
    }
}mat[maxn],ans;

void cal(int x)
{
   mat[x].init();
   for(int i=0;i<5;i++) mat[x].m[i][i]=0;
   if(a[x]==2)
   {
       mat[x].m[0][0]=1;//从空状态到空状态需要把当前的a[x]删掉,所以转移所需代价为1
       mat[x].m[0][1]=0;//从空状态到1状态只需把当前的a[x]加上即可
   }
   /*下面如上*/
   if(a[x]==0){mat[x].m[1][1]=1;mat[x].m[1][2]=0;}
   if(a[x]==1){mat[x].m[2][2]=1;mat[x].m[2][3]=0;}
   if(a[x]==7){mat[x].m[3][3]=1;mat[x].m[3][4]=0;}
   if(a[x]==6)
   {
       mat[x].m[3][3]=1;//2016这种情况是不允许出现的,所以它只能从3转移到3
       mat[x].m[4][4]=1;//因为上不去了嘛,所以只能从4到4了
       /*这个地方之前想的时候会有一个疑问,就是说当串为20176的时候,感觉是不是会把6删掉
         这样一来,答案会不会达不到最小,然后在问了学姐以后意识到
         这个cal处理的只是每一个字符的矩阵,对于7来说,它的状态是0,他们每一个字符的矩阵是独立的,
         求最短的这个操作只有进行了floyd以后才可以求到最短,现在只是建了一条4到4的路而已
         我太菜了qaq
       */
   }
}

void solve()
{
    for(int i=1;i<=n;i++) scanf("%1d",&a[i]);
    for(int i=1;i<=n;i++)
        cal(i);
    ans.init();
    for(int i=0;i<5;i++) ans.m[i][i]=0;
    for(int i=1;i<=n;i++)
        ans=ans*mat[i]; //从前往后一个一个转移
    printf("%d\n",dp[0][4]<=n?dp[0][4]:-1);//如果从1到n无法转移到所需状态,dp[0][4]==inf
}

问题2

  1. 如何求一段区间,我们发现,前缀和是完不成这个任务的,因为乘完了以后不可能再除回去
  2. 我们选择了线段树这个工具
  3. 我们进行建树操作,将几个矩阵并起来,实现logn的区间查询,就是加了一个普通的建树操作和区间查询操作,只不过这边建树的时候是采取了floyd矩阵转移的方式

完整代码如下

#include <iostream>
#include<stdio.h>
#include<string>
#include<string.h>
#include<map>
#include<queue>
#include<deque>
#include<vector>
#include<algorithm>
#include<stack>


using namespace std;
typedef long long ll;
typedef pair<ll,ll>P;
const ll mod=1e9+7;
const int maxn=200005;
const int inf=0x3f3f3f3f;
/*在这里,我们定义空状态为0,2为1,20为2,201为3,2017为4
mat[x]的矩阵m[i][j]表示当前在x位置上要从i状态转移到j状态需要删除多少字符*/

struct Matrice
{
    int m[5][5];
    void init(){memset(m,inf,sizeof(m));}
    Matrice operator *(const Matrice a) const
    {
        Matrice res;
        res.init();
        /*floyd最短路转移*/
        for(int k=0;k<5;k++)
         for(int i=0;i<5;i++)
          for(int j=0;j<5;j++)
           res.m[i][j]=min(res.m[i][j],m[i][k]+a.m[k][j]);
        return res;
    }
}mat[maxn<<2],ans;
int a[maxn],n,m;

void cal(int x,int root)
{
   mat[root].init();
   for(int i=0;i<5;i++) mat[root].m[i][i]=0;
   if(a[x]==2)
   {
       mat[root].m[0][0]=1;//从空状态到空状态需要把当前的a[x]删掉,所以转移所需代价为1
       mat[root].m[0][1]=0;//从空状态到1状态只需把当前的a[x]加上即可
   }
   /*下面如上*/
   if(a[x]==0){mat[root].m[1][1]=1;mat[root].m[1][2]=0;}
   if(a[x]==1){mat[root].m[2][2]=1;mat[root].m[2][3]=0;}
   if(a[x]==7){mat[root].m[3][3]=1;mat[root].m[3][4]=0;}
   if(a[x]==6)
   {
       mat[root].m[3][3]=1;//2016这种情况是不允许出现的,所以它只能从3转移到3
       mat[root].m[4][4]=1;//因为上不去了嘛,所以只能从4到4了
       /*
         这个地方之前想的时候会有一个疑问,就是说当串为20176的时候,感觉是不是会把6删掉
         这样一来,答案会不会达不到最小,然后在问了学姐以后意识到
         这个cal处理的只是每一个字符的矩阵,对于7来说,它的状态是0,他们每一个字符的矩阵是独立的,
         求最短的这个操作只有进行了floyd以后才可以求到最短,现在只是建了一条4到4的路而已
         我太菜了qaq
       */
   }
}

void build(int l,int r,int root)
{
   if(l==r)
   {
       cal(l,root);
       return ;
   }
   int mid=l+r>>1;
   build(l,mid,root<<1);
   build(mid+1,r,root<<1|1);
   mat[root]=mat[root<<1]*mat[root<<1|1];
}

/*线段树区间查询*/
void query(int root,int l,int r,int ql,int qr)
{
    if(l>=ql&&r<=qr)
    {
        ans=ans*mat[root];
        return ;
    }
    int mid=r+l>>1;
    if(mid>=ql) query(root<<1,l,mid,ql,qr);
    if(mid<qr) query(root<<1|1,mid+1,r,ql,qr);
}

void solve()
{
    for(int i=1;i<=n;i++) scanf("%1d",&a[i]);
    build(1,n,1);
    int l,r;
    while(m--)
    {
        ans.init();
        for(int i=0;i<5;i++) ans.m[i][i]=0;
        scanf("%d%d",&l,&r);
        query(1,1,n,l,r);
        printf("%d\n",ans.m[0][4]<=n?ans.m[0][4]:-1);//如果从1到n无法转移到所需状态,dp[0][4]==inf
    }
}

int main()
{
    scanf("%d%d",&n,&m);
    solve();
    return 0;
}

综上所述,我太菜了qaq

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值