如何使用Redis实现消息队列
基于List的LPUSH+BRPOP实现
足够简单,消费消息延迟几乎为零,但是需要处理空闲连接的问题。
如果线程一直阻塞在那里,Redis客户端的连接就成了闲置连接,闲置过久,服务器一般会主动断开连接,减少闲置资源占用,这个时候blpop和brpop或抛出异常,所以在编写客户端消费者的时候要小心,如果捕获到异常,还有重试。
其他缺点包括:
做消费者确认ACK麻烦,不能保证消费者消费消息后是否成功处理的问题(宕机或处理异常等),通常需要维护一个Pending列表,保证消息处理确认;不能做广播模式,如pub/sub,消息发布/订阅模型;不能重复消费,一旦消费就会被删除;不支持分组消费。
基于Sorted-Set实现
多用来实现延迟队列,当然也可以实现有序的普通的消息队列,但是消费者无法阻塞的获取消息,只能轮询,不允许重复消息。
基于PUB/SUB, 订阅/发布模式实现
优点
典型的广播模式,一个消息可以发布到多个消费者;多信道订阅,消费者可以同时订阅多个信道,从而接收多类消息;消息即时发送,消息不同等待消费者读取,消费者会自动接收到信道发布的消息。
缺点
消息一旦分布,不能接收。换句话就是发布时若客户端不在线,则消息丢失,不能寻回;不能保证每个消费者接收的时间是一致的;若消费者客户端出现消息积压,到一定程度,会被强制断开,导致消息意外丢失。通常发生在消息的生产远大于消费速度时;可见,Pub/Sub模式不适合做消息存储,消息积压类的业务,而是擅长处理广播,即时通讯,即时反馈的业务。
基于Stream类型的实现
Stream消息太多怎么办
要是消息积累太多,Stream的链表岂不是很长,内容会不会爆掉?xdel指令又不会删除消息,它只是给消息做了标志位。
Redis自然考虑到了这一点,所以它提供了一个定长Stream功能,在xadd的指令提供一个定长长度maxlen,就可以将老的消息干掉,确保最多不超过指定长度。
消息如果忘记ACK会怎样
Stream在每个消费者结构中保存了正在处理中的消息ID列表PEL,如果消费者收到了消息处理完了但是没有回复ack,就会导致PEL列表不断增长,如果有很多消费组的话,那么这个PEL占用的内存就会放大。所以消息要尽可能的快速消费并确认。
PEL如何避免消息丢失
在客户端消费者读取Stream消息时,Redis服务器将消息回复给客户端的过程中,客户端突然断开了连接,消息就丢失了。但是PEL里已经保存了发出去的消息ID。待客户端重新连上之后,可以再次收到PEL中的消息ID列表。不过此时xreadgroup的起始消息ID不能为参数,而必须是任意有效的消息ID,一般将参数设为0-0,表示读取所有的PEL消息以及自last_delivered_id之后的新消息。
死信问题
如果某个消息,不能被消费者处理,也就是不能被XACK,这是要长时间处于Pending列表中,即使被反复的转移给各个消费者也是如此。此时该消息的delivery counter(通过XPENDING可以查询到)就会累加,当累加到某个我们预设的临界值时,我们就认为是坏消息(也叫死信,DeadLetter,无法投递的消息),由于有了判定条件,我们将坏消息处理即可,删除即可。删除一个消息,使用XDEL语法,注意,这个命令并没有删除Pending中的消息,因此查看Pending,消息还会在,可以在执行XDEL之后,XACK这个消息标识其处理完毕。
Stream的高可用
Stream的高可用是建立主从复制基础上的,它和其他数据结构的复制机制没有区别,也就是说在Sentinel和Cluster集群环境下Stream是可以支持高可用的。不过鉴于Redis的指令复制是异步的,在failover发生时,Redis可能会丢失极小部分数据,这点Redis的气压数据结构也是一样的。
分区Partition
Redis的服务器没有原生支持分区能力,如果想要使用分区,那就需要分配多个Stream,然后在客户端使用一定的策略来生产消息到不同的Stream。