完全背包
有N件物品和一个最多能背重量为W的背包。
第i件物品的重量是weight[i],得到的价值是value[i] 。
每件物品都有无限个(也就是可以放入背包多次),求解将哪些物品装入背包里物品价值总和最大。
完全背包和01背包问题唯一不同的地方就是,每种物品有无限件。
举例说明:
背包最大重量为4。
物品为:
重量 | 价值 | |
---|---|---|
物品0 | 1 | 3 |
物品1 | 3 | 20 |
物品2 | 4 | 30 |
每件商品都有无限个!
问背包能背的物品最大价值是多少?
01背包和完全背包唯一不同就是体现在遍历顺序上,所以本文就不去做动规五部曲了,我们直接针对遍历顺序经行分析!
首先再回顾一下01背包的核心代码
for(int i = 0; i < weight.size(); i++){ // 遍历物品
for(int j = bagWeight; j >= weight[i]; j--){ // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
我们知道01背包内嵌的循环是从大到小遍历,为了保证每个物品仅被添加一次。
而完全背包的物品是可以添加多次的,所以要从小到大去遍历,即:
// 先遍历物品,再遍历背包
for(int i = 0; i < weight.size(); i++){ // 遍历物品
for(int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
dp[j] = max(dp[j], dp[j - weight[i]] + value[i]);
}
}
至于为什么,在动态规划:关于01背包问题,你该了解这些!(滚动数组) 中也做了讲解。
dp状态图如下:
相信很多同学看网上的文章,关于完全背包介绍基本就到为止了。
其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?
其实还有一个很重要的问题,为什么遍历物品在外层循环,遍历背包容量在内层循环?
难道就不能遍历背包容量在外层,遍历物品在内层?
看过这两篇的话:
- 动态规划:关于01背包问题,你该了解这些!
- 动态规划:关于01背包问题,你该了解这些!(滚动数组)
就知道了,01背包中二维dp数组的两个for遍历的先后循序是可以颠倒了,一维dp数组的两个for循环先后循序一定是先遍历物品,再遍历背包容量。
在完全背包中,对于一维dp数组来说,其实两个for循环嵌套顺序是无所谓的!
因为dp[j] 是根据下标j之前所对应的dp[j]计算出来的。 只要保证下标j之前的dp[j]都是经过计算的就可以了。
遍历物品在外层循环,遍历背包容量在内层循环,状态如图:
遍历背包容量在外层循环,遍历物品在内层循环,状态如图:
看了这两个图,大家就会理解,完全背包中,两个for循环的先后循序,都不影响计算dp[j]所需要的值(这个值就是下标j之前所对应的dp[j])。
先遍历背包在遍历物品,代码如下:
// 先遍历背包,再遍历物品
for(int j = 0; j <= bagWeight; j++){ // 遍历背包容量
for(int i = 0; i < weight.size(); i++){ // 遍历物品
if(j - weight[i] >= 0) dp[j] = max(dp[j], dp[j - weight[i] + value[i]]);
}
}
总结
细心的同学可能发现,全文我说的都是对于纯完全背包问题,其for循环的先后循环是可以颠倒的!
但如果题目稍稍有点变化,就会体现在遍历顺序上。
如果问装满背包有几种方式的话? 那么两个for循环的先后顺序就有很大区别了,而leetcode上的题目都是这种稍有变化的类型。
这个区别,我将在后面讲解具体leetcode题目中给大家介绍,因为这块如果不结合具题目,单纯的介绍原理估计很多同学会越看越懵!
最后,又可以出一道面试题了,就是纯完全背包,要求先用二维dp数组实现,然后再用一维dp数组实现,最后再问,两个for循环的先后是否可以颠倒?为什么? 这个简单的完全背包问题,估计就可以难住不少候选人了。
代码实现
//先遍历物品,再遍历背包
private static void testCompletePack(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 0; i < weight.length; i++){ // 遍历物品
for (int j = weight[i]; j <= bagWeight; j++){ // 遍历背包容量
dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i]);
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
//先遍历背包,再遍历物品
private static void testCompletePackAnotherWay(){
int[] weight = {1, 3, 4};
int[] value = {15, 20, 30};
int bagWeight = 4;
int[] dp = new int[bagWeight + 1];
for (int i = 1; i <= bagWeight; i++){ // 遍历背包容量
for (int j = 0; j < weight.length; j++){ // 遍历物品
if (i - weight[j] >= 0){
dp[i] = Math.max(dp[i], dp[i - weight[j]] + value[j]);
}
}
}
for (int maxValue : dp){
System.out.println(maxValue + " ");
}
}
参考资料:代码随想录-动态规划:完全背包理论基础