题目链接:
传送门
题目描述:
动物王国中有三类动物 A,B,C,这三类动物的食物链构成了有趣的环形。A吃B,B吃C,C吃A。
现有N个动物,以1-N编号。每个动物都是A,B,C中的一种,但是我们并不知道它到底是哪一种。
有人用两种说法对这N个动物所构成的食物链关系进行描述:
第一种说法是“1 X Y”,表示X和Y是同类。
第二种说法是“2 X Y”,表示X吃Y。
此人对N个动物,用上述两种说法,一句接一句地说出K句话,这K句话有的是真的,有的是假的。当一句话满足下列三条之一时,这句话就是假话,否则就是真话。
1) 当前的话与前面的某些真的话冲突,就是假话;
2) 当前的话中X或Y比N大,就是假话;
3) 当前的话表示X吃X,就是假话。
你的任务是根据给定的N(1<=N<=50,000)和K句话(0<=K<=100,000),输出假话的总数。
输入格式:
第一行是两个整数N和K,以一个空格分隔。
以下K行每行是三个正整数D,X,Y,两数之间用一个空格隔开,其中 D 表示说法的种类。
若D=1,则表示X和Y是同类。
若D=2,则表示X吃Y。
输出格式:
只有一个整数,表示假话的数目。
题目思路:
本题考察了并查集的相关操作。这里用到了反集这个概念(与往期的团伙一题类似)。
x,y
x+n,y+n分别表示x,y的猎物
x+2n,y+2n分别表示x,y的天敌
参考代码:
#include <stdio.h>
int n,k;
int parent[150001];
int count=0;
void init(int n)
{
int i;
for(i=1;i<=3*n;i++)
parent[i]=i;
}
int find(x)
{
if(x==parent[x])
return x;
else
return parent[x]=find(parent[x]);
}
void Union(int a,int b)
{
int A=find(a);
int B=find(b);
if(A!=B)
parent[A]=B;
}
int main()
{
int i,d,x,y;
scanf("%d%d",&n,&k);
/* x,y
x+n,y+n 猎物
x+2*n,y+2*n 天敌
*/
init(n);
for(i=0;i<k;i++)
{
scanf("%d%d%d",&d,&x,&y);
if(x>n||y>n)//当前的话中X或Y比N大,就是假话。
{
count++;
continue;
}
if(d==1)//x和y是同类。
{
if(find(x+n)==find(y)||find(y)==find(x+2*n))
{ //x的猎物是y(x吃y),y是x的天敌(y吃x)。
count++;
continue;
}
Union(x,y);//同类的同类是同类。
Union(x+n,y+n);//同类的猎物一样。
Union(x+2*n,y+2*n);//同类的天敌一样。
}
if(d==2)//x吃y。
{
if(find(x)==find(y)||find(x+2*n)==find(y))
{ //x和y是同类,y是x的天敌(y吃x)。
count++;
continue;
}
Union(x+n,y);//x的猎物是y。
Union(x+2*n,y+n);//x的天敌是y的猎物。(食物链)
Union(x,y+2*n);//x是y的天敌。
}
}
printf("%d",count);
return 0;
}
参考资料:
传送门