线段树详解

线段树

这是一棵线段树,线段树是一颗严格的二叉树,根节点存储了区间长度为 n = 8 n=8 n=8 的信息,每个节点会不断二分 2 2 2 个子节点,分别包含原本一半的信息,节点会二分到区间大小变成 1 1 1 为止,同时该线段树高度为 ⌈ l o g 2 n ⌉ + 1 \lceil{log_{2}n}\rceil+1 log2n+1

同时若每个节点的编号为 d d d,则其子节点的编号为 d ∗ 2 d*2 d2 d ∗ 2 + 1 d*2+1 d2+1

在这里插入图片描述

线段树的建立

从根节点开始建立线段树,不断递归构建其左右孩子,直至叶子节点(区间大小为 1 1 1)。回溯时,每个节点从左右孩子节点统计信息,完成区间信息合并。(这一操作我们会用 p u s h u p ( ) pushup() pushup() 函数实现)

线段树的查询

对于这样一个数据结构,当我们需要查询一个区间的信息,只要从根节点出发,不断向子节点递归,直到**当前节点的区间完全被包含于查询的区间,就可以向上汇总信息。**例如:

查询区间 [ 1 ] [1] [1]

在这里插入图片描述

查询区间 [ 3 , 4 ] [3,4] [3,4]

在这里插入图片描述

查询区间 [ 4 , 7 ] [4,7] [4,7]

在这里插入图片描述

可以说,除了查询区间的两边可能出现在线段树的叶子节点,查询区间的中间部分都可以在非叶子节点查询到,且区间越大,中间部分被查找到的深度越低,所以线段树的查询操作的复杂度为 O ( l o g 2 n ) O(log_2n) O(log2n) 级。

线段树的修改

线段树的修改分为单点修改和区间修改。

只需要单点修改的线段树修改时都会到达叶子节点,更改叶子节点的信息,在回溯的时候更新路径上各节点的区间信息。复杂度 O ( l o g 2 n ) O(log_2n) O(log2n)。如:

在这里插入图片描述

需要区间修改的线段树,保证所有查询的正确性,则每次需要更新到区间的所有叶子节点,那复杂度将达到 O ( n ) O(n) O(n),这个复杂度写暴力不香🐎。所以我们需要加入一点点优化:延迟标记 ( l a z y − t a g ) (lazy-tag) (lazytag)

延迟标记是什么呢 跟它的名字一样,是用来偷懒的。

当我们递归到节点区间完全被修改区间包含,我们可以对这个节点进行修改,同时给这个节点打上标记,表示这个节点被修改过,但其的子节点尚未修改。等到查询到这个节点时再修改(标记下传 : p u s h d o w n ( ) pushdown() pushdown() 函数)。

在这里插入图片描述

code

// 以区间加法为例
#include <bits/stdc++.h>
using namespace std;

#define ll long long
#define maxn 100000
#define dl (d << 1)      // => d * 2
#define dr (d << 1 | 1)  // => d * 2 + 1

struct node {
    ll l, r, sum, tag;
    node() : l(0), r(0), sum(0), tag(0) {}
} sgt[(maxn << 2) + 5];

ll n, m, a[maxn + 5];
// pushup 从左右孩子合并信息
void pushup(ll d) { sgt[d].sum = sgt[dl].sum + sgt[dr].sum; }
// pushdown 更新子节点信息 & 标记下传
void pushdown(ll d) {
    sgt[dl].sum += (sgt[dl].r - sgt[dl].l + 1) * sgt[d].tag;
    sgt[dr].sum += (sgt[dr].r - sgt[dr].l + 1) * sgt[d].tag;
    sgt[dl].tag += sgt[d].tag;
    sgt[dr].tag += sgt[d].tag;
    sgt[d].tag = 0;
}
// 修改
void add(ll d, ll l, ll r, ll k) {
    // 遇到处于修改区间内的节点 修改 打上标记 并返回
    if (sgt[d].l >= l && sgt[d].r <= r) {
        sgt[d].sum += k * (sgt[d].r - sgt[d].l + 1);
        sgt[d].tag += k;
        return;
    }
    int mid = sgt[d].l + sgt[d].r >> 1;
    if (sgt[d].tag) pushdown(d);  // 有tag先更新子节点 & 标记下传
    if (l <= mid) add(dl, l, r, k);  // 查询左端点<=mid => 左孩子需要修改
    if (r > mid) add(dr, l, r, k);  // 查询右端点>mid => 右孩子需要修改
    pushup(d);                      // 回溯时从子节点更新
}
// 建树
void build(ll d, ll l, ll r) {
    sgt[d].l = l;  // 节点左右端点赋值
    sgt[d].r = r;
    sgt[d].tag = 0;
    if (l == r) {  // 到达叶子节点 赋初值 返回
        sgt[d].sum = a[l];
        return;
    }
    ll mid = l + r >> 1;
    build(dl, l, mid);
    build(dr, mid + 1, r);
    pushup(d);  // 回溯时从子节点统计信息
}
// 查询
ll query(ll d, ll l, ll r) {
    if (sgt[d].l >= l && sgt[d].r <= r)
        return sgt[d].sum;        // 在查询区间内返回和
    if (sgt[d].tag) pushdown(d);  // 有tag先更新子节点 & 标记下传
    ll ret = 0;
    int mid = sgt[d].l + sgt[d].r >> 1;
    if (l <= mid) ret += query(dl, l, r);
    if (r > mid) ret += query(dr, l, r);
    return ret;
}

int main() {
    scanf("%lld%lld", &n, &m);
    for (int i = 1; i <= n; i++) scanf("%lld", &a[i]);
    build(1, 1, n);
    while (m--) {
        ll op, l, r;
        scanf("%lld%lld%lld", &op, &l, &r);
        if (op == 1) {  // op为1时 [l,r]加k
            ll k;
            scanf("%lld", &k);
            add(1, l, r, k);
        } else {  // op为2时 查询[l,r]的和
            printf("%lld\n", query(1, l, r));
        }
    }
    return 0;
}
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值