题目
代码
#include<bits/stdc++.h>
using namespace std;
const int N = 100010;
int main()
{
int mode = 0;
int w,s;
cin>>w>>s;
string in;
int code[N];
int res[N];
cin>>in;
int j=0;
for(int i=0; i<in.length(); i++){
if(in[i]>= 'A' && in[i]<='Z'){
if(mode==0){
code[j]=in[i]-'A'; j++;
}
else if(mode == 1){
code[j] = 28; j++;
code[j] = 28; j++;
code[j]=in[i]-'A'; j++;
mode = 0;
}
else{
code[j] = 28; j++;
code[j]=in[i]-'A'; j++;
mode = 0;
}
}
else if(in[i]>='a' && in[i]<='z'){
if(mode ==0){
code[j] = 27; j++;
code[j]=in[i]-'a'; j++;
mode = 1;
}
else if(mode==1){
code[j]=in[i]-'a'; j++;
}
else{
code[j] = 27; j++;
code[j]=in[i]-'a'; j++;
mode = 1;
}
}
else{
if(mode == 0){
code[j] = 28; j++;
code[j]=in[i]-'0'; j++;
mode = 2;
}
else if(mode == 1){
code[j] = 28; j++;
code[j]=in[i]-'0'; j++;
mode = 2;
}
else{
code[j]=in[i]-'0'; j++;
}
}
}
if(j%2 != 0){
code[j] = 29;j++;
}
int index = 0;
for(int k=0; k<j; k+=2){
res[index] = code[k]*30+code[k+1];
index++;
}
//index is the num of data
//cout<<"index1:"<<index<<endl;
int k;
if(s==-1){
k = 0;
}else{
k = pow(2,s+1);
}
while((index+1+k)% w != 0){
res[index] = 900;
index++;
}
//cout<<"index2:"<<index<<endl;
int n = index+1;//add one then equal to the total num of res
cout<<n<<endl;
for(int i=0; i<index; i++){
cout<<res[i]<<endl;
}
int g_size = k+1,d_size = n+k;
int g[g_size],d[d_size];
g[g_size-1] = -3;g[g_size-2] = 1;//initial
int a =3;
for(int i=g_size-3; i>=0; i--){
g[i] = g[i+1]%929;
a=(a*3)%929;
for(int j=i+1; j<g_size-1; j++){
g[j] = (g[j+1] - g[j]*a)%929;
}
g[g_size-1] = (-g[g_size-1]*a)%929;
}
/*for(int i=0; i<g_size; i++){
cout<<g[i]<<" ";
}*/
d[0] = n;
for(int i=1; i<=n; i++){
d[i] = res[i-1];
}
for(int i=n+1; i<n+k; i++){
d[i] = 0;
}
/*for(int i=0; i<n+k; i++){
cout<<d[i]<<" ";
}*/
for(int i=0; i<n; i++){
int temp = d[i]/g[0];
for(int j=0; j<=k; j++){
//cout<<"i:"<<i<<"j:"<<j<<" "<<"d[i]:"<<d[i]<<endl;
d[i+j] = (d[i+j]-g[j]*temp)%929;
//cout<<"d_i+j:"<<d[i+j]<<endl;
}
}
for(int i=n; i<n+k; i++){
cout<<(-d[i]%929+929)%929<<endl;
}
}
参考文章思路:link
自己做出来了50分,有两个方面没有考虑到:
- 在求r(x)多项式时,自己一直想的是通过找规律来解决,通过各种拆多项式,写了密密麻麻几页纸,做的都是些无用功。将思路转换为求余是最关键的一步。这种没办法,只能多练。
- 没有考虑到数据爆炸的问题,如果有考虑到这个问题,或许也不会naive到只弄个int,好歹会搞个long long示意一下。自己对数据空间和时间的复杂度太不敏感了,很明显,光一个int大小也就 2 31 2^{31} 231,而本题k的范围[1,512],只需要k为32时, 3 32 3^{32} 332就足以撑爆小小的int。long long在 3 512 3^{512} 3512面前也跟个小朋友似的。但是自己却丝毫没有考虑到这个问题,甚至在第一遍程序正确的情况下(只是未考虑数据爆掉的情况)又写了第二遍,还一直以为时程序逻辑的错误。
这个毛病也体现在边界问题上,时常没有仔细考虑边界问题,思考不清楚。经常示例过了,但一提交就完蛋,自己还检查不出来。以后得刻意留意一下数据爆炸、边界条件、时间和空间复杂度的问题。
附c++数据范围:
int 32位:不能超过
2
∗
1
0
10
2*10^{10}
2∗1010,一般在
1
0
9
10^9
109以内int都不会超,但到了
1
0
10
10^{10}
1010且有加法操作,就得考虑用long long。
long long 64位:不能超过
9
∗
1
0
19
9*10^{19}
9∗1019。
int [-2^31,2^31-1]
十进制:[-2147483648,+2147483647]
unsigned [0,2^32-1]
long long [-2^63,2^63-1]
十进制:[-9223372036854775808,9223372036854775807]
unsigned long long [0,2^64-1]
char [-128,127]
本文介绍了一道编程竞赛题目,涉及登机牌条码的解析和编码过程。作者分享了自己在解决过程中遇到的难点,如多项式求余和数据溢出问题,并反思了忽视数据爆炸和边界条件的错误。文章强调了在编程中理解数据范围和复杂度分析的重要性。
1151

被折叠的 条评论
为什么被折叠?



