空间不变与空间变化 PSF (Point Spread Function,点扩散函数)非盲去卷积

本文详细介绍了空间不变和空间变化点spreadfunction(PSF)的非盲去卷积技术,涵盖了维纳滤波、Lucy-Richardson算法、正则化方法、深度学习以及Zemax仿真的应用,重点讨论了处理空间变化PSF的策略和不同应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非盲去卷积是一种图像处理技术,其目标是利用已知的模糊图像和对应的PSF来恢复原始的清晰图像。这里的关键是“非盲”这个词,它意味着PSF是已知的。

空间不变PSF

空间不变的PSF描述了一个成像系统对于点光源或点物体的响应。

在理想情况下,点光源或点物体在图像上应该表现为一个清晰、紧凑的点。然而,在实际系统中,由于各种因素(如光学系统的衍射、传感器的不完美等),这个点会扩散成一个更大的区域,这就是PSF所描述的。PSF的宽度决定了重建图像的空间分辨率,即能够区分两个不同点的最小间隔。

空间变化 PSF

PSF在整个图像中不是恒定的,而是随着位置或其他因素变化。

空间变化PSF非盲去卷积是在图像处理领域中的一种高级技术,特别适用于处理那些由于成像系统的非均匀性或者场景深度的变化而导致PSF在图像中发生空间变化的情况。例如当使用广角镜头拍摄大场景时,由于镜头畸变和景深的不同,不同区域的PSF可能会有所不同。

两者区别

成像特性

  1. 空间不变PSF:整个图像的退化程度是恒定的,不随位置或其他因素变化;
  2. 空间变化PSF:扩散函数在图像中随着位置或其他因素发生变化。

影响因素

  1. 空间不变PSF:固定模糊源引起
  2. 空间变化PSF&#
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

qq_46165876

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值