Spring Cloud 笔记

Spring Cloud

官方文档

微服务

微服务是一种架构风格,即将单体应用划分为小型的服务单元,微服务之间使用 HTTP 的 API 进行资源访问与操作。

微服务架构的优势

1)服务的独立部署

每个服务都是一个独立的项目,可以独立部署,不依赖于其他服务,耦合性低。

2)服务的快速启动

拆分之后服务启动的速度必然要比拆分之前快很多,因为依赖的库少了,代码量也少了。

3)更加适合敏捷开发

敏捷开发以用户的需求进化为核心,采用迭代、循序渐进的方法进行。服务拆分可以快速发布新版本,修改哪个服务只需要发布对应的服务即可,不用整体重新发布。

4)职责专一,由专门的团队负责专门的服务

业务发展迅速时,研发人员也会越来越多,每个团队可以负责对应的业务线,服务的拆分有利于团队之间的分工。

5)服务可以动态按需扩容

当某个服务的访问量较大时,我们只需要将这个服务扩容即可。

6)代码的复用

每个服务都提供 REST API,所有的基础服务都必须抽出来,很多的底层实现都可以以接口方式提供。

微服务架构的劣势

1)分布式部署,调用的复杂性高

单体应用的时候,所有模块之前的调用都是在本地进行的,在微服务中,每个模块都是独立部署的,通过 HTTP 来进行通信,这当中会产生很多问题,比如网络问题、容错问题、调用关系等。

2)独立的数据库,分布式事务的挑战

每个微服务都有自己的数据库,这就是所谓的去中心化的数据管理。这种模式的优点在于不同的服务,可以选择适合自身业务的数据,比如订单服务可以用 MySQL、评论服务可以用 Mongodb、商品搜索服务可以用 Elasticsearch。

缺点就是事务的问题了,目前最理想的解决方案就是柔性事务中的最终一致性,后面的章节会给大家做具体介绍。

3)测试的难度提升

服务和服务之间通过接口来交互,当接口有改变的时候,对所有的调用方都是有影响的,这时自动化测试就显得非常重要了,如果要靠人工一个个接口去测试,那工作量就太大了。这里要强调一点,就是 API 文档的管理尤为重要。

4)运维难度的提升

在采用传统的单体应用时,我们可能只需要关注一个 Tomcat 的集群、一个 MySQL 的集群就可以了,但这在微服务架构下是行不通的。当业务增加时,服务也将越来越多,服务的部署、监控将变得非常复杂,这个时候对于运维的要求就高了。

Spring Cloud 模块

img

  • Eureka:服务注册中心,用于服务管理。
  • Ribbon:基于客户端的负载均衡组件。
  • Hystrix:容错框架,能够防止服务的雪崩效应。
  • Feign:Web 服务客户端,能够简化 HTTP 接口的调用。
  • Zuul:API 网关,提供路由转发、请求过滤等功能。
  • Config:分布式配置管理。
  • Sleuth:服务跟踪。
  • Stream:构建消息驱动的微服务应用程序的框架。
  • Bus:消息代理的集群消息总线

Spring Cloud和Dubbo的区别

先从 Nginx 说起,了解为什么需要微服务。最初的服务化解决方案是给相同服务提供一个统一的域名,然后服务调用者向这个域发送 HTTP 请求,由 Nginx 负责请求的分发和跳转。

这种架构存在很多问题:Nginx 作为中间层,在配置文件中耦合了服务调用的逻辑,这削弱了微服务的完整性,也使得 Nginx 在一定程度上变成了一个重量级的 ESB。图 1 标识出了 Nginx 的转发信息流走向。

Nginx转发的信息流

服务的信息分散在各个系统,无法统一管理和维护。每一次的服务调用都是一次尝试,服务消费方并不知道有哪些实例在给他们提供服务。这带来了一些问题:

  • 无法直观地看到服务提供方和服务消费方当前的运行状况与通信频率;
  • 消费方的失败重发、负载均衡等都没有统一策略,这加大了开发每个服务的难度,不利于快速演化。

为了解决上面的问题,我们需要一个现成的中心组件对服务进行整合,将每个服务的信息汇总,包括服务的组件名称、地址、数量等。

Dubbo

Dubbo 是阿里开源的一个 SOA 服务治理解决方案。Dubbo 的定位始终是一款 RPC 框架。

SOA:Service-Oriented Architecture 面向服务的结构

RPC:Remote Procedure Call 远程过程调用,简单的理解是一个节点请求另一个节点提供的服务,对应 RESTful api

REST:Representational State Transfer 表述性状态传递,REST定义了Web的使用标准,例如HTTP和URI。

Dubbo的基本架构图:

Dubbo的基本架构图

  • 调用中间层变成了可选组件,消费方可以直接访问服务提供方;
  • 服务信息被集中到 Registry 中,形成了服务治理的中心组件;
  • 通过 Monitor 监控系统,可以直观地展示服务调用的统计信息;
  • 服务消费者可以进行负载均衡、服务降级的选择。

缺陷

  • Registry 严重依赖第三方组件(ZooKeeper 或者 Redis),当这些组件出现问题时,服务调用很快就会中断。
  • Dubbo 只支持 RPC 调用。这使得服务提供方与调用方在代码上产生了强依赖,服务提供方需要不断将包含公共代码的 Jar 包打包出来供消费方使用。一旦打包出现问题,就会导致服务调用出错。
Spring Cloud

Dubbo 的定位始终是一款 RPC 框架,而 Spring Cloud 的目标是微服务架构下的一站式解决方案。

功能名称DubboSpring Cloud
服务注册中心ZooKeeperSpring Cloud Netflix Eureka
服务调用方式RPCREST API
服务网关Spring Cloud Netflix Zuul
断路器不完善Spring Cloud Netflix Hystrix
分布式配置Spring Cloud Config
服务跟踪Spring Cloud Sleuth
消息总线Spring Cloud Bus
数据流Spring Cloud Stream
批量任务Spring Cloud Task

Spring Cloud 抛弃了 Dubbo 的 RPC 通信,采用的是基于 HTTP 的 REST 方式。

严格来说,这两种方式各有优劣。虽然从一定程度上来说,后者牺牲了服务调用的性能,但也避免了上面提到的原生 RPC 带来的问题。而且 REST 相比 RPC 更为灵活,服务提供方和调用方,不存在代码级别的强依赖,这在强调快速演化的微服务环境下显得更加合适。

Spring Cloud Eureka

服务治理

Spring Cloud封装了Netflix 公司开发的Eureka模块来实现服务治理

在传统的RPC远程调用框架中,管理每个服务与服务之间依赖关系比较复杂,管理比较复杂,所以需要使用服务治理,管理服务于服务之间依赖关系,可以实现服务调用、负载均衡、容错等,实现服务发现与注册。

服务注册与发现

Eureka采用了CS的设计架构,Eureka Sever作为服务注册功能的服务器,它是服务注册中心。而系统中的其他微服务,使用Eureka的客户端连接到 Eureka Server并维持心跳连接。这样系统的维护人员就可以通过Eureka Server来监控系统中各个微服务是否正常运行。

在服务注册与发现中,有一个注册中心。当服务器启动的时候,会把当前自己服务器的信息比如服务地址通讯地址等以别名方式注册到注册中心上。另一方(消费者服务提供者),以该别名的方式去注册中心上获取到实际的服务通讯地址,然后再实现本地RPC调用RPC远程调用框架核心设计思想:在于注册中心,因为使用注册中心管理每个服务与服务之间的一个依赖关系(服务治理概念)。在任何RPC远程框架中,都会有一个注册中心存放服务地址相关信息(接口地址)。

img

Eureka包含两个组件:Eureka Server 和 Eureka Client

Eureka Server提供服务注册服务

各个微服务节点通过配置启动后,会在EurekaServer中进行注册,这样EurekaServer中的服务注册表中将会存储所有可用服务节点的信息,服务节点的信息可以在界面中直观看到。

Eureka Client通过注册中心进行访问

它是一个Java客户端,用于简化Eureka Server的交互,客户端同时也具备一个内置的、使用轮询(round-robin)负载算法的负载均衡器。在应用启动后,将会向Eureka Server发送心跳(默认周期为30秒)。如果Eureka Server在多个心跳周期内没有接收到某个节点的心跳,EurekaServer将会从服务注册表中把这个服务节点移除(默认90秒)。

Eureka自我保护

自我保护背景

首先对Eureka注册中心需要了解的是Eureka各个节点都是平等的,没有ZK中角色的概念, 即使N-1个节点挂掉也不会影响其他节点的正常运行。

默认情况下,**如果Eureka Server在一定时间内(默认90秒)没有接收到某个微服务实例的心跳,Eureka Server将会移除该实例。**但是当网络分区故障发生时,微服务与Eureka Server之间无法正常通信,而微服务本身是正常运行的,此时不应该移除这个微服务,所以引入了自我保护机制。

自我保护机制

官方对于自我保护机制的定义:

自我保护模式正是一种针对网络异常波动的安全保护措施,使用自我保护模式能使Eureka集群更加的健壮、稳定的运行。

自我保护机制的工作机制是:如果在15分钟内超过85%的客户端节点都没有正常的心跳,那么Eureka就认为客户端与注册中心出现了网络故障,Eureka Server自动进入自我保护机制,此时会出现以下几种情况:

  1. Eureka Server不再从注册列表中移除因为长时间没收到心跳而应该过期的服务。
  2. Eureka Server仍然能够接受新服务的注册和查询请求,但是不会被同步到其它节点上,保证当前节点依然可用。
  3. 当网络稳定时,当前Eureka Server新的注册信息会被同步到其它节点中。

因此Eureka Server可以很好的应对因网络故障导致部分节点失联的情况,而不会像ZK那样如果有一半不可用的情况会导致整个集群不可用而变成瘫痪。

三个注册中心异同点
组件名语言CAP服务健康检查对外暴露接口Spring Cloud集成
EurekaJavaAP可配支持HTTP
ConsulGoCP支持HTTP/DNS
ZookeeperJavaCP支持客户端已集成

CAP:

  • C:Consistency (强一致性)
  • A:Availability (可用性)
  • P:Partition tolerance (分区容错性)

img

最多只能同时较好的满足两个

CAP理论的核心是:一个分布式系统不可能同时很好的满足一致性、可用性、分区容错性这三个需求。

因此,根据CAP原理将NoSQL数据库分成了满足CA原则、满足CP原则和满足AP原则三大类:

  • CA - 单点集群,满足—致性,可用性的系统,通常在可扩展性上不太强大。
  • CP - 满足一致性,分区容忍必的系统,通常性能不是特别高。
  • AP - 满足可用性,分区容忍性的系统,通常可能对一致性要求低一些。

AP架构(Eureka)

当网络分区出现后,为了保证可用性,系统B可以返回旧值,保证系统的可用性。

结论:违背了一致性C的要求,只满足可用性和分区容错,即AP

img

CP架构(ZooKeeper/Consul)

当网络分区出现后,为了保证一致性,就必须拒接请求,否则无法保证一致性。

结论:违背了可用性A的要求,只满足一致性和分区容错,即CP。

img

Ribbon

Spring Cloud Ribbon 是一个基于 HTTP 和 TCP 的客户端负载均衡工具,它基于 Netflix Ribbon 实现。通过 Spring Cloud 的封装,可以让我们轻松地将面向服务的 REST 模版请求自动转换成客户端负载均衡的服务调用

简单来说,Ribbon即 负载均衡 + RestTemplate调用

RestTemplate简单使用

  • getForObject() / getForEntity() - GET请求方法
  • postForObject() / postForEntity() - POST请求方法
  • getForObject():返回对象为响应体中数据转化成的对象,基本上可以理解为Json。
  • getForEntity():返回对象为ResponseEntity对象,包含了响应中的一些重要信息,比如响应头、响应状态码、响应体等。
LB负载均衡(Load Balance)

将用户的请求平摊的分配到多个服务上,从而达到系统的HA (高可用)。

HA:High Availability

目前主流的负载方案分为以下两种:

  • 集中式负载均衡,在消费者和服务提供方中间使用独立的代理方式进行负载,有硬件的(比如 F5),也有软件的(比如 Nginx)。
  • 客户端自己做负载均衡,根据自己的请求情况做负载,Ribbon 就属于客户端自己做负载。
Ribbon 和 Nginx 负载均衡区别
  • Nginx是服务器负载均衡,客户端所有请求都会交给nginx,然后由nginx实现转发请求。即负载均衡是由服务端实现的。

  • Ribbon本地负载均衡,在调用微服务接口时候,会在注册中心上获取注册信息服务列表之后缓存到JVM本地,从而在本地实现RPC远程服务调用技术。

Ribbon工作步骤
  1. 第一步先选择EurekaServer ,它优先选择在同一个区域内负载较少的server。
  2. 第二步再根据用户指定的策略,在从server取到的服务注册列表中选择一个地址。
Ribbon负载均衡策略

默认的负载策略是轮询,可自定义负载均衡策略。

Ribbon自带的负载策略:

Ribbon自带负载策略

  1. RoundRobinRule 轮询
  2. RandomRule 随机
  3. RetryRule 先按照RoundRobinRule的策略获取服务,如果获取服务失败则在指定时间内会进行重
  4. WeightedResponseTimeRule 对RoundRobinRule的扩展,响应速度越快的实例选择权重越大,越容易被选择
  5. BestAvailableRule 会先过滤掉由于多次访问故障而处于断路器跳闸状态的服务,然后选择一个并发量最小的服务
  6. AvailabilityFilteringRule 先过滤掉故障实例,再选择并发较小的实例
  7. ZoneAvoidanceRule 默认规则,复合判断server所在区域的性能和server的可用性选择服务器
默认负载轮询算法原理

rest接口第几次请求数 % 服务器集群总数量 = 实际调用服务器位置下标,每次服务重启动后rest接口计数从1开始。

Feign

Feign is a declarative web service client. It makes writing web service clients easier. To use Feign create an interface and annotate it. It has pluggable annotation support including Feign annotations and JAX-RS annotations. Feign also supports pluggable encoders and decoders. Spring Cloud adds support for Spring MVC annotations and for using the same HttpMessageConverters used by default in Spring Web. Spring Cloud integrates Ribbon and Eureka, as well as Spring Cloud LoadBalancer to provide a load-balanced http client when using Feign. link

Feign是一个声明式WebService客户端。使用Feign能让编写Web Service客户端更加简单。**它的使用方法是定义一个服务接口然后在上面添加注解。**Feign也支持可拔插式的编码器和解码器。Spring Cloud对Feign进行了封装,使其支持了Spring MVC标准注解和HttpMessageConverters。Feign可以与Eureka和Ribbon组合使用以支持负载均衡。

Feign能干什么

Feign旨在使编写Java Http客户端变得更容易。

前面在使用Ribbon+RestTemplate时,利用RestTemplate对http请求的封装处理,形成了一套模版化的调用方法。但是在实际开发中,由于对服务依赖的调用可能不止一处,往往一个接口会被多处调用,所以通常都会针对每个微服务自行封装一些客户端类来包装这些依赖服务的调用。所以,Feign在此基础上做了进一步封装,由他来帮助我们定义和实现依赖服务接口的定义。**在Feign的实现下,我们只需创建一个接口并使用注解的方式来配置它(以前是Dao接口上面标注Mapper注解,现在是一个微服务接口上面标注一个Feign注解即可),**即可完成对服务提供方的接口绑定,简化了使用Spring cloud Ribbon时,自动封装服务调用客户端的开发量。

Feign集成了Ribbon

利用Ribbon维护了Payment的服务列表信息,并且通过轮询实现了客户端的负载均衡。而与Ribbon不同的是,通过feign只需要定义服务绑定接口且以声明式的方法,优雅而简单的实现了服务调用。

Feign和OpenFeign的区别

  • Feign是Spring Cloud组件中的一个轻量级RESTful的HTTP服务客户端Feign内置了Ribbon,用来做客户端负载均衡,去调用服务注册中心的服务。Feign的使用方式是:使用Feign的注解定义接口,调用这个接口,就可以调用服务注册中心的服务。
  • OpenFeign是Spring Cloud在Feign的基础上支持了SpringMVC的注解,如@RequesMapping等等。OpenFeign的@Feignclient可以解析SpringMVc的@RequestMapping注解下的接口,并通过动态代理的方式产生实现类,实现类中做负载均衡并调用其他服务。

OpenFeign使用

在这里插入图片描述

Hystrix

Hystrix 是 Netflix 针对微服务分布式系统采用的熔断保护中间件,相当于电路中的保险丝。

在分布式环境中,许多服务依赖项中的一些必然会失败。Hystrix 是一个库,通过添加延迟容忍和容错逻辑,帮助你控制这些分布式服务之间的交互。Hystrix 通过隔离服务之间的访问点、停止级联失败和提供回退选项来实现这一点,所有这些都可以提高系统的整体弹性。

在微服务架构下,很多服务都相互依赖,如果不能对依赖的服务进行隔离,那么服务本身也有可能发生故障,Hystrix 通过 HystrixCommand 对调用进行隔离,这样可以阻止故障的连锁效应,能够让接口调用快速失败并迅速恢复正常,或者回退并优雅降级。

分布式和微服务的区别

服务的雪崩效应

在一个分布式系统中,服务之间都是相互调用的,因“服务提供者的不可用”(原因)导致“服务调用者不可用”(结果),并将不可用逐渐放大的现象。

服务降级、熔断、限流

服务降级

服务器忙,请稍后再试,不让客户端等待并立刻返回一个友好提示,fallback

—旦调用服务方法失败并抛出了错误信息后,自动调用@HystrixCommand标注好的fallbackMethod调用类中的指定方法。

@Service
public class PaymentService{

    @HystrixCommand(fallbackMethod = "paymentInfo_TimeOutHandler"/*指定善后方法名*/, commandProperties = {
            @HystrixProperty(name="execution.isolation.thread.timeoutInMilliseconds",value="3000")
    })
    public String paymentInfo_TimeOut(Integer id) {
        ...
    }
}

服务熔断

熔断机制是应对雪崩效应的一种微服务链路保护机制。当扇出链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。当检测到该节点微服务调用响应正常后,恢复调用链路。

在Spring Cloud框架里,熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状况,当失败的调用到一定阈值,缺省是5秒内20次调用失败,就会启动熔断机制。熔断机制的注解是@HystrixCommand。

//=====服务熔断
@HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = {
    @HystrixProperty(name = "circuitBreaker.enabled",value = "true"),// 是否开启断路器
    @HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"),// 请求次数
    @HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"), // 时间窗口期
    @HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"),// 失败率达到多少后跳闸
})
public String paymentCircuitBreaker(@PathVariable("id") Integer id) {
    ...
}

涉及到断路器的三个重要参数:

  1. 快照时间窗:断路器确定是否打开需要统计一些请求和错误数据,而统计的时间范围就是快照时间窗,默认为最近的10秒。
  2. 请求总数阀值:在快照时间窗内,必须满足请求总数阀值才有资格熔断。默认为20,意味着在10秒内,如果该hystrix命令的调用次数不足20次7,即使所有的请求都超时或其他原因失败,断路器都不会打开。
  3. 错误百分比阀值:当请求总数在快照时间窗内超过了阀值,比如发生了30次调用,如果在这30次调用中,有15次发生了超时异常,也就是超过50%的错误百分比,在默认设定50%阀值情况下,这时候就会将断路器打开。

服务限流

秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行。

配置
  1. 依赖

    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
    </dependency>
    
  2. 注解

    @HystrixCommand
    

网关

微服务架构中网关的位置

img

zuul

Zuul 是 Netflix OSS 中的一员,是一个基于 JVM 路由和服务端的负载均衡器。提供路由、监控、弹性、安全等方面的服务框架。Zuul 能够与 Eureka、Ribbon、Hystrix 等组件配合使用。

Gateway

Spring Cloud Gateway 是 Spring 官方基于 Spring 5.0、Spring Boot 2.0 和 Project Reactor 等技术开发的网关,Spring Cloud Gateway 旨在为微服务架构提供一种简单有效的、统一的 API 路由管理方式。

img

三个核心概念:

1)Route(路由)

Route 是网关的基础元素,由 ID、目标 URI、断言、过滤器组成。当请求到达网关时,由 Gateway Handler Mapping 通过断言进行路由匹配(Mapping),当断言为真时,匹配到路由。

2)Predicate(断言)

Predicate 是 Java 8 中提供的一个函数。输入类型是 Spring Framework ServerWebExchange。它允许开发人员匹配来自 HTTP 的请求,例如请求头或者请求参数。简单来说它就是匹配条件

3)Filter(过滤)

Filter 是 Gateway 中的过滤器,可以在请求发出前后进行一些业务上的处理。

工作原理

Spring Cloud Gateway 的工作原理跟 Zuul 的差不多,最大的区别就是 Gateway 的 Filter 只有 pre 和 post 两种。

在这里插入图片描述

客户端向 Spring Cloud Gateway 发出请求,如果请求与网关程序定义的路由匹配,则该请求就会被发送到网关 Web 处理程序,此时处理程序运行特定的请求过滤器链。

过滤器之间用虚线分开的原因是过滤器可能会在发送代理请求的前后执行逻辑。所有 pre 过滤器逻辑先执行,然后执行代理请求;代理请求完成后,执行 post 过滤器逻辑。

核心逻辑:路由转发 + 执行过滤器链

配置路由
  1. pom

    <!--gateway-->
    <dependency>
        <groupId>org.springframework.cloud</groupId>
        <artifactId>spring-cloud-starter-gateway</artifactId>
    </dependency>
    
  2. yml

    spring:
      application:
        name: cloud-gateway
        #  网关配置
      cloud:
        gateway:
          routes:
            - id: payment_routh #payment_route    #路由的ID,没有固定规则但要求唯一,建议配合服务名
              uri: http://localhost:8001 #静态路由
              #uri: lb://cloud-payment-service #动态路由 需要eureka-client依赖
              predicates:
                - Path=/payment/get/**         # 断言,路径相匹配的进行路由
    
predicate

Spring Cloud Gateway matches routes as part of the Spring WebFlux HandlerMapping infrastructure. Spring Cloud Gateway includes many built-in route predicate factories. All of these predicates match on different attributes of the HTTP request. You can combine multiple route predicate factories with logical and statements.

Spring Cloud Gateway将路由匹配作为Spring WebFlux HandlerMapping基础架构的一部分。Spring Cloud Gateway包括许多内置的Route Predicate工厂。所有这些Predicate都与HTTP请求的不同属性匹配。多个RoutePredicate工厂可以进行组合。

常用的Route Predicate Factory

  1. The After Route Predicate Factory
  2. The Before Route Predicate Factory
  3. The Between Route Predicate Factory
  4. The Cookie Route Predicate Factory
  5. The Header Route Predicate Factory
  6. The Host Route Predicate Factory
  7. The Method Route Predicate Factory
  8. The Path Route Predicate Factory
  9. The Query Route Predicate Factory
  10. The RemoteAddr Route Predicate Factory
  11. The weight Route Predicate Factory

在yml的predicates中配置使用

Filter

Route filters allow the modification of the incoming HTTP request or outgoing HTTP response in some manner. Route filters are scoped to a particular route. Spring Cloud Gateway includes many built-in GatewayFilter Factories.

路由过滤器可用于修改进入的HTTP请求和返回的HTTP响应,路由过滤器只能指定路由进行使用。Spring Cloud Gateway内置了多种路由过滤器,他们都由GatewayFilter的工厂类来产生。

Spring Cloud Gateway 中内置了很多过滤器工厂,直接采用配置的方式使用即可,同时也支持自定义 GatewayFilter Factory 来实现更复杂的业务需求。

spring:
  cloud:
    gateway:
      routes:
        - id: add_request_header_route
  uri: http://c.biancheng.net
  filters:
    - AddRequestHeader=X-Request-Foo, Bar
  1. AddRequestHeader 过滤器工厂

    通过名称我们可以快速明白这个过滤器工厂的作用是添加请求头。

    符合规则匹配成功的请求,将添加 X-Request-Foo:bar 请求头,将其传递到后端服务中,后方服务可以直接获取请求头信息。代码如下所示。

  2. RemoveRequestHeader 过滤器工厂

    RemoveRequestHeader 是移除请求头的过滤器工厂,可以在请求转发到后端服务之前进行 Header 的移除操作。

  3. SetStatus 过滤器工厂

    SetStatus 过滤器工厂接收单个状态,用于设置 Http 请求的响应码。它必须是有效的 Spring Httpstatus(org.springframework.http.HttpStatus)。它可以是整数值 404 或枚举类型 NOT_FOUND。

  4. RedirectTo过滤器工厂

    RedirectTo 过滤器工厂用于重定向操作,比如我们需要重定向到百度。

自定义Spring Cloud Gateway过滤器工厂

@Component
@Slf4j
public class MyLogGateWayFilter implements GlobalFilter,Ordered { 
    @Override
    public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
        log.info("***********come in MyLogGateWayFilter:  "+new Date());
        String uname = exchange.getRequest().getQueryParams().getFirst("uname");
        
        if(uname == null) {
            log.info("*******用户名为null,非法用户,o(╥﹏╥)o");
            exchange.getResponse().setStatusCode(HttpStatus.NOT_ACCEPTABLE);
            return exchange.getResponse().setComplete();
        }
        return chain.filter(exchange);
    }
}

Config

分布式配置中心

Spring Cloud Config provides server and client-side support for externalized configuration in a distributed system. With the Config Server you have a central place to manage external properties for applications across all environments. The concepts on both client and server map identically to the Spring Environment and PropertySource abstractions, so they fit very well with Spring applications, but can be used with any application running in any language. As an application moves through the deployment pipeline from dev to test and into production you can manage the configuration between those environments and be certain that applications have everything they need to run when they migrate. The default implementation of the server storage backend uses git so it easily supports labelled versions of configuration environments, as well as being accessible to a wide range of tooling for managing the content. It is easy to add alternative implementations and plug them in with Spring configuration.

Spring Cloud Config 为分布式系统中的外部化配置提供服务器端和客户端支持。使用配置服务器,您可以集中管理所有环境中应用程序的外部属性。客户端和服务器上的概念与 SpringEnvironmentPropertySource抽象,因此它们非常适合 Spring 应用程序,但可以用于以任何语言运行的任何应用程序。当应用程序通过部署管道从开发到测试再进入生产时,您可以管理这些环境之间的配置,并确保应用程序在迁移时拥有运行所需的一切。服务器存储后端的默认实现使用 git,因此它可以轻松支持配置环境的标记版本,并且可以访问用于管理内容的各种工具。添加替代实现并使用 Spring 配置将它们插入很容易。

img

分布式系统面临的配置问题

微服务意味着要将单体应用中的业务拆分成一个个子服务,每个服务的粒度相对较小,因此系统中会出现大量的服务。由于每个服务都需要必要的配置信息(如yml)才能运行,所以一套集中式的、动态的配置管理设施是必不可少的。

Spring Cloud Config 分为客户端和服务端

  • Spring Cloud Config Server features:

    • HTTP, resource-based API for external configuration (name-value pairs, or equivalent YAML content)
    • 加密和解密属性值(对称或非对称)
    • 使用 @EnableConfigServer 轻松嵌入 Spring Boot application 中
  • Config Client features (for Spring applications):

    • Bind to the Config Server and initialize Spring Environment with remote property sources
    • Encrypt and decrypt property values (symmetric or asymmetric)

配置读取规则

官方文档

  • /{label}/{application}-{profile}.yml(推荐)
    • master分支
      http://config-3344.com:3344/master/config-dev.yml
      http://config-3344.com:3344/master/config-test.yml
      http://config-3344.com:3344/master/config-prod.yml
    • dev分支
      http://config-3344.com:3344/dev/config-dev.yml
      http://config-3344.com:3344/dev/config-test.yml
      http://config-3344.com:3344/dev/config-prod.yml
Config配置总控中心搭建

pom

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-config-server</artifactId>
</dependency>

yaml

server:
  port: ...

spring:
  application:
    name:  cloud-config-center #注册进Eureka服务器的微服务名
  cloud:
    config:
      server:
        git:
          uri: git@github.com:zzyybs/springcloud-config.git #GitHub上面的git仓库名字
        ####搜索目录
          search-paths:
            - springcloud-config
      ####读取分支
      label: master

#服务注册到eureka地址
eureka:
  ...
Config客户端配置

bootstrap.yml

  • applicaiton.yml是用户级的资源配置项

  • bootstrap.yml是系统级的,优先级更加高

Spring Cloud会创建一个Bootstrap Context,作为Spring应用的Application Context的父上下文。

初始化的时候,BootstrapContext负责从外部源加载配置属性并解析配置。这两个上下文共享一个从外部获取的Environment。

Bootstrap属性有高优先级,默认情况下,它们不会被本地配置覆盖。Bootstrap context和Application Context有着不同的约定,所以新增了一个bootstrap.yml文件,保证Bootstrap Context和Application Context配置的分离。

要将Client模块下的application.yml文件改为bootstrap.yml,这是很关键的,因为bootstrap.yml是比application.yml先加载的。bootstrap.yml优先级高于application.yml。

#bootstrap.yml
server:
  port: ...

spring:
  application:
    name: config-client
  cloud:
    #Config客户端配置
    config:
      label: master #分支名称
      name: config #配置文件名称
      profile: dev #读取后缀名称   上述3个综合:master分支上config-dev.yml的配置文件被读取http://config-3344.com:3344/master/config-dev.yml
      uri: http://localhost:3344 #配置中心地址k

#服务注册到eureka地址
eureka:
  ...

pom

<dependency>
    <groupId>org.springframework.cloud</groupId>
    <artifactId>spring-cloud-starter-config</artifactId>
</dependency>

Bus

消息总线

Spring Cloud Bus links nodes of a distributed system with a lightweight message broker. This can then be used to broadcast state changes (e.g. configuration changes) or other management instructions. AMQP and Kafka broker implementations are included with the project. Alternatively, any Spring Cloud Stream binder found on the classpath will work out of the box as a transport.

Spring Cloud Bus 将分布式系统的节点与轻量级消息代理连接起来。这随后可用于广播状态更改(例如配置更改)或其他管理指令。AMQP 和 Kafka 代理实现包含在项目中。或者,在类路径上找到的任何Spring Cloud Stream绑定器都可以作为传输开箱即用。

能干嘛

Spring Cloud Bus能管理和传播分布式系统间的消息,就像一个分布式执行器,可用于广播状态更改、事件推送等,也可以当作微服务间的通信通道。

Spring Cloud Bus配合Spring Cloud Config使用可以实现配置的动态刷新

什么是总线

在微服务架构的系统中,通常会使用轻量级的消息代理来构建一个共用的消息主题,并让系统中所有微服务实例都连接上来。由于该主题中产生的消息会被所有实例监听和消费,所以称它为消息总线。在总线上的各个实例,都可以方便地广播一些需要让其他连接在该主题上的实例都知道的消息。

基本原理

ConfigClient实例都监听MQ中同一个topic(默认是Spring Cloud Bus)。当一个服务刷新数据的时候,它会把这个信息放入到Topic中,这样其它监听同一Topic的服务就能得到通知,然后去更新自身的配置。

Stream

Spring Cloud Stream is a framework for building highly scalable event-driven microservices connected with shared messaging systems.

Spring Cloud Stream 是一个框架,用于构建与共享消息系统连接的高度可扩展的事件驱动微服务。

解决的问题

开发过程中可能会出现使用多种MQ,Spring Cloud Stream 提供一种适配绑定的方式,自动的给我们在各种MQ内切换。(类似于Hibernate于数据库)

Cloud Stream 屏蔽底层消息中间件的差异,降低切换成本,统一消息的编程模型

Sleuth

Spring Cloud Sleuth provides Spring Boot auto-configuration for distributed tracing.

Spring Cloud Sleuth为Spring Boot 提供了分布式追踪的自动配置

解决的问题

在微服务框架中,一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果,每一个前段请求都会形成一条复杂的分布式服务调用链路,链路中的任何一环出现高延时或错误都会引起整个请求最后的失败。

Spring Cloud Sleuth提供了一套完整的服务跟踪的解决方案
opic中,这样其它监听同一Topic的服务就能得到通知,然后去更新自身的配置。

Stream

Spring Cloud Stream is a framework for building highly scalable event-driven microservices connected with shared messaging systems.

Spring Cloud Stream 是一个框架,用于构建与共享消息系统连接的高度可扩展的事件驱动微服务。

解决的问题

开发过程中可能会出现使用多种MQ,Spring Cloud Stream 提供一种适配绑定的方式,自动的给我们在各种MQ内切换。(类似于Hibernate于数据库)

Cloud Stream 屏蔽底层消息中间件的差异,降低切换成本,统一消息的编程模型

Sleuth

Spring Cloud Sleuth provides Spring Boot auto-configuration for distributed tracing.

Spring Cloud Sleuth为Spring Boot 提供了分布式追踪的自动配置

解决的问题

在微服务框架中,一个由客户端发起的请求在后端系统中会经过多个不同的的服务节点调用来协同产生最后的请求结果,每一个前段请求都会形成一条复杂的分布式服务调用链路,链路中的任何一环出现高延时或错误都会引起整个请求最后的失败。

Spring Cloud Sleuth提供了一套完整的服务跟踪的解决方案

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值