2021SC@SDUSC
Senta 代码结构
Senta 项目的代码结构以及简介如下, 本文重点介绍如何利用 Fluid Python API 完成模型的构建和训练,关于如何利用Fluid C-API 进行模型的在线部署,可以参考该项目的说明文档。
Senta
├── C-API/ # 模型预测C-API接口
├── data/ # 数据集
│ ├── test_data/
│ │ └── corpus.test
│ ├── train_data/
│ │ └── corpus.train
│ └── train.vocab
├── eval.sh # 模型评价脚本
├── infer.sh # 模型预测脚本
├── nets.py # 本例中涉及的各种网络结构均定义在此文件中,│ # 若进一步修改模型结构,请查看此文件
├── README.md # 说明文档
├── sentiment_classify.py # 情感倾向分析主函数,包括训练、预估、预测 │ # 部分
├── train.sh # 模型训练脚本
└── utils.py # 定义通用的函数,例如加载词典,读入数据等
在网上的paddlehub平台上进行运行,初步分析语句的情感
最后得出 两个句子是positive的还是negative的