什么是图?
1.表示一种多对多的关系
数据对象集:G(V,E)由一个非空的有限顶点集合V和一个有限边集合E组成;
包含
1.一组顶点:通常用V(vertex)表示顶点集合;
2.一组边:通常用E(Edge)表示边的集合;
常见术语
怎么在程序中表示一个图
1.邻接矩阵(只有稠密才划算)
*优点:*
1.直观、简单、好理解
2.方便检查任意一对顶点间是否存在边
3.方便找任一顶点的所有“邻接点”(有边直接相连的顶点)
4.方便计算任一顶点的“度”(从该点发出的边数为“出 度”,指向该点的边数为“入度”)
无向图与有向图的度的计算方法
**无向图:**对应行(或列)非0元素的个数 ;
**有向图:**对应行非0元素的个数是“出度”;对应列非0元素的 个数是“入度;
缺点:
1.浪费空间——存稀疏图(点很多而边很少)有大量无效元素
2.对稠密图(特别是完全图)还是很合算的 浪费时间——统计稀疏图中一共有多少条边
用领接矩阵表示图
顶点信息:有n个顶点的图G(V, E) 用一维数组D [ n ] 表示
边的信息:用邻接矩阵A [ n ] [ n ] 表示为:
用上图的用玲接矩阵表示为
对于无向图的存储,怎样可以省一半空间
用一个长度为N(N+1)/2的1维数组A存储 {G00,G10,G11,……,Gn-1 0,…,Gn-1 n-1}, 则Gij在A中对应的下标是: ( i(i+1)/2 + j );
对于网络,只要把G[i][j]的值定义为边 <vi,vj>的权重即可.
2.邻接表(只有稀疏才划算)
定义:G[N]为指针数组,对应矩阵每行一个链表, 只存非0元素;
优点
1.方便找任一顶点的所有“邻接点”
2.节约稀疏图的空间 需要N个头指针+ 2E个结点(每个结点至少2个域)
3.方便计算任一顶点的“度”?
4.对无向图:是的
5.对有向图:只能计算“出度”;需要构造“逆邻接表”(存指向自己 的边)来方便计算“入度
图的遍历
DFS在空间上占优势,但往往耗时,BFS在时间上占优势,但浪费空间。
1.深度优先搜索(DFS)
原路返回(堆栈)
时间复杂度
用邻接表存储图:有O(N+E)
用邻接矩阵存储图,有O(N2);
DFS例题
邻接矩阵存储图的深度优先遍历
void DFS( MGraph Graph, Vertex V, void (*Visit)(Vertex) )
{
Vertex i;
Visited[V] = 1;
Visit(V);
for(i = 0; i < Graph->Nv ; i++)
{
if(Graph->G[V][i] ==1&&!Visited[i])
{
DFS(Graph, i, Visit);
}
}
return;
}
2.广度优先搜索(BFS)
相当于树的层序遍历
时间复杂度
用邻接表存储图:有O(N+E)
用邻接矩阵存储图,有O(N2);
BFS例题
void BFS ( LGraph Graph, Vertex S, void (*Visit)(Vertex) ) {
int q[MaxVertexNum],head = 0,tail = 0;
q[tail ++] = S;
Visited[S] = true;
while(head < tail) {
int temp = q[head ++];
Visit(temp);
Visited[temp] = true;
PtrToAdjVNode k = (Graph -> G[temp]).FirstEdge;
while(k) {
int d = k -> AdjV;
if(!Visited[d]) {
Visited[d] = true;
q[tail ++] = d;
}
k = k -> Next;
}
}
}
图不连通怎么办?
连通:如果从V到W存在一条(无向)路径,则称 V和W是连通的
路径:V到W的路径是一系列顶点{V, v1, v2, …, vn, W}的集合,其中任一对相邻的顶点间都有图 中的边。路径的长度是路径中的边数(如果带 权,则是所有边的权重和)。如果V到W之间的所 有顶点都不同,则称简单路径
回路:起点等于终点的路径
连通图:图中任意两顶点均连通
连通分量:无向图的极大连通子图
极大顶点数:再加1个顶点就不连通了
极大边数:包含子图中所有顶点相连的所有边
强连通:有向图中顶点V和W之间存在双向路 径,则称V和W是强连通的
强连通图:有向图中任意两顶点均强连通
强连通分量:有向图的极大强连通子图
应用实例
拯救
深度优先(DFS)
//visited[]标记是否走过了
voidListComponents( Graph G )
{
for( each V in G )
if( !visited[V] )
{
DFS( V );
}
}
intDFS ( Vertex V )
{
visited[V] = true;
if( IsSafe(V) )//判断是否可以上岸,可以就直接结束
answer = YES;
else
{
for( each V in G )
if( !visited[W]&&Jump(v,w))Jump(v,w)//是否在跳的范围内
{
answer = DFS(W);
if(answer==YES)
break;
}
}
return answer;
}
应用例题
六度空间
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。输入格式:输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤103,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。输出格式:对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。输入样例:10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
分析
对每个节点,进行广度优先搜索
搜索过程中累计访问的节点数
需要记录“层”数,仅计算 6层以内的节点数
BFS代码区
void BFS(int P)
{
struct ints
{
int sp, cnt;
};
queue<ints> Q;
Q.push({P, 0});
book[P] = true;
int pass{1};
while (!Q.empty())
{
ints top = Q.front();
if (top.cnt == 6)
break;
for (int i = 1; i <= N; ++i)
{
if (mat[top.sp][i] && !book[i])
{
pass++;
Q.push({i, top.cnt + 1});
book[i] = true;
}
}
Q.pop();
}
printf("%d: %.2lf%%\n", P, (static_cast<double>(pass) / N) * 100);
}