[Machine Learning Course of Andrew-Ng 吴恩达的机器学习课程]机器学习学习笔记(2)--最简单的线性回归

不必时时怀念我,也不要指望我回来,我离开以后,你们就是我,
Vive le peuple!

线性回归是最简单的机器学习模型,是个人都可以学会

一.引例

使用一组俄勒冈州波特兰市的城市住房价格的数据,通过机器学习的方法来预测住房价格

在这里插入图片描述
在这里插入图片描述
我们的目标是将一个数据集,通过训练算法训练一个函数h(或者说假设),通过输入价格x,能输出对应的预测价格e
在这里插入图片描述

注:此例子的预测函数是线性函数
在这里插入图片描述

二.代价函数

它有什么用:

代价函数用于计算预测值和实际值之间的误差,它用于和后面的梯度下降函数共同配合找到最优解

这是我们的假设函数h(或者说预测函数)
在这里插入图片描述

不同情况下预测函数的图像
在这里插入图片描述

线性回归中,最简单的代价函数格式:

在这里插入图片描述

一个对公式的直观图像理解(预测函数仅有hθ1):
红色点为数据的实际点,蓝色的点是预测的点,蓝线就是误差
在这里插入图片描述

这里附上代价函数和θ1的关系图像
在这里插入图片描述

复杂一点的例子(以h=θ1x+θ0为例)

在这里插入图片描述
它的代价函数大致是长这样子的:

我的评价是:有点哈人
在这里插入图片描述
如果以等高线来看的话是长这样的
红圈标的地方就是代价函数的最小值点
在这里插入图片描述

三.梯度下降

思想

这是theta1和theta0关于损失函数的图像,我们的目标是让学习算法从这个图像中找到代价函数的最小值点
在这里插入图片描述
图示过程如下
在这里插入图片描述
在这里插入图片描述

如果出发点不同的话很有可能导致不同的结果
在这里插入图片描述

算法实现

梯度下降的公式如下
在这里插入图片描述

其中α为学习率,其后面的那坨玩意是代价函数对于某个theta的偏导

理解梯度下降

对于单一变量,它可以照如下方式处理
由图可以理解,α后面那坨东西就是代价函数对于某个theta的偏导,也就是在图像中的斜率
在这里插入图片描述

学习度和梯度下降

学习度如果取值不当,则会产生不良结果
学习度过低
不会影响预测结果,但是会增加算法的资源消耗
在这里插入图片描述
学习度过低
会让学习过程产生震荡,无法得到最终结果
在这里插入图片描述

学习过程怎么终止

对于单个变量
在这里插入图片描述
由此图可知,当向最小值移动时,斜率会降低,到最小值点时,斜率为0,学习过程停止
在这里插入图片描述

如果每次进行迭代,每次结果的差不超过0.001时,结果收敛
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值