数值分析思考题(钟尔杰版)参考解答——第二章


1. 二分法迭代数列的误差限是如何估计的?

x ∗ x^{*} x是方程f(x)=0的准确解, x k x_k xk是二分法产生的第k次迭代的近似解,
[a,b]是二分法开始时的隔根区间,则有 ∣ x k − x ∗ ∣ ≤ b − a 2 n + 1 \left|x_{k}-x^{*}\right| \leq \frac{b-a}{2^{n+1}} xkx2n+1ba


2. 二分法区间序列[an,bn]中,两相邻区间中点距离为多少?

∣ x n − x n − 1 ∣ = ∣ 1 2 ( a n + b n ) − 1 2 ( a n − 1 + b n − 1 ) ∣ \left|x_{n}-x_{n-1}\right|=\left|\frac{1}{2}\left(a_{n}+b_{n}\right)-\frac{1}{2}\left(a_{n-1}+b_{n-1}\right)\right| xnxn1=21(an+bn)21(an1+bn1)


3. 写出方程 e − x − sin ⁡ x = 0 e^{-x}-\sin x=0 exsinx=0正根的隔根区间。

 令  f ( x ) = e − x − sin ⁡ x f ( 0 ) = 1 > 0 f ( 1 ) = 1 e − sin ⁡ 1 < 0 ⇒ f ( 0 ) ⋅ f ( 1 ) < 0 f ′ ( x ) = − e − x − cos ⁡ x < 0 , 0 < x < 1  所以函数在 [0, 1]有唯一零点,故  [ 0 , 1 ]  是隔根区间  \begin{aligned} &\begin{aligned} \text { 令 } f(x)=e^{-x}-\sin x \quad f(0)=1>0 \\ f(1)=\frac{1}{e}-\sin 1<0 \Rightarrow f(0) \cdot f(1)<0 \\ f^{\prime}(x)=-e^{-x}-\cos x<0,0<x<1 \end{aligned}\\ &\text { 所以函数在 [0, 1]有唯一零点,故 }[0,1] \text { 是隔根区间 } \end{aligned}   f(x)=exsinxf(0)=1>0f(1)=e1sin1<0f(0)f(1)<0f(x)=excosx<0,0<x<1 所以函数在 [0, 1]有唯一零点,故 [0,1] 是隔根区间 


4. 何谓不动点迭代?不动点与方程的根有何区别?

  1. 设方程 f ( x ) = 0 \mathrm{f}(\mathrm{x})=0 f(x)=0 可以转化为等价的形式 x = g ( x ) \mathrm{x}=\mathrm{g}(\mathrm{x}) x=g(x), 从某个初值 x 0 x_{0} x0 出发。
    x k + 1 = g ( x k ) , k = 0 , 1 , 2 , 3 , … ( ∗ ) x_{k+1}=g\left(x_{k}\right), k=0,1,2,3, \ldots \quad(*) xk+1=g(xk),k=0,1,2,3,()
    得到序列 { x k } \left\{x_{k}\right\} {xk}, 当 g ( x ) \mathrm{g}(\mathrm{x}) g(x) 连续,且 { x k } \left\{x_{k}\right\} {xk} 收敛于 α \alpha α 时有,
    lim ⁡ k → ∞ x k + 1 = lim ⁡ k → ∞ g ( x k ) = g ( lim ⁡ k → ∞ x k ) \lim _{k \rightarrow \infty} x_{k+1}=\lim _{k \rightarrow \infty} g\left(x_{k}\right)=\mathrm{g}\left(\lim _{k \rightarrow \infty} x_{k}\right) limkxk+1=limkg(xk)=g(limkxk), 即有 α = g ( α ) \alpha=g(\alpha) α=g(α), 所以 α \alpha α 是方程 f ( x ) = 0 \mathrm{f}(\mathrm{x})=0 f(x)=0 的根,称上述函数 g ( x ) \mathrm{g}(\mathrm{x}) g(x) 为迭代函数,称 α \alpha α 是它的一个不动点,构造迭代公式 ( ∗ ) (*) () 的方法称为不动点迭代法。
  2. 方程的根是孤立的,彼此没有联系,而不动点之间可以迭代产生,彼此
    有联系。

5. 不动点迭代收敛速度的阶是什么意思?

lim ⁡ n → ∞ x n = x ∗ \lim _{n \rightarrow \infty} x_{n}=x^{*} limnxn=x, 若存在 a > 0 , r > 0 \mathrm{a}>0, \mathrm{r}>0 a>0,r>0 使得 lim ⁡ n → ∞ ∣ x n + 1 − x ∗ ∣ ∣ x n − x ∗ ∣ r = a \lim _{n \rightarrow \infty} \frac{\left|x_{n+1}-x^{*}\right|}{\left|x_{n}-x^{*}\right|^{r}}=a limnxnxrxn+1x=a, 则称数列 { x n } r \{\mathrm{xn}\} \mathrm{r} {xn}r阶收敛
特别地 :
(1)收敛阶 r = 1 r=1 r=1 时, 称为线性收敛;
(2) 收敛阶 r > 1 r>1 r>1 时, 称为超收敛;
(3) 收敛阶 r = 2 r=2 r=2 时, 称为平方收敛;
收敛阶数越高, 收敛速度越快


6.牛顿迭代法的2阶收敛速度如何解释?

f ( x ) \mathrm{f}(\mathrm{x}) f(x) 在点 x \mathrm{x} x *的某邻域内具有二阶连续导数, 且设 f ( x ∗ ) = 0 \mathrm{f}(\mathrm{x} *)=0 f(x)=0,
f ′ ( x ∗ ) ≠ 0 f^{\prime}\left(x^{*}\right) \neq 0 f(x)=0, 则对充分靠近点 x ∗ x^{*} x 的初值 x 0 x 0 x0, 牛顿迭代法至少平方收敛
x n + 1 = x n − f ( x n ) f ′ ( x n ) x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} xn+1=xnf(xn)f(xn)
φ ( x ) = x n − f ( x n ) f ′ ( x n ) φ ′ ( x ) = f ( x ∗ ) f ′ ′ ( x ∗ ) [ f ′ ( x ) ] 2 = 0 \varphi(x)=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)} \quad \varphi^{\prime}(x)=\frac{f\left(x^{*}\right) f^{\prime \prime}\left(x^{*}\right)}{\left[f^{\prime}(x)\right]^{2}}=0 φ(x)=xnf(xn)f(xn)φ(x)=[f(x)]2f(x)f(x)=0
φ ′ ′ ( x ∗ ) = f ′ ′ ( x ∗ ) f ′ ( x ∗ ) \varphi^{\prime \prime}\left(x^{*}\right)=\frac{f^{\prime \prime}\left(x^{*}\right)}{f^{\prime}\left(x^{*}\right)} φ(x)=f(x)f(x)
所以,牛顿迭代法至少二阶收敛。


7. 牛顿迭代法和割线法有何区别?

牛顿迭代法是单步迭代,产生一个数列逐次逼近位于初值附近的方程的根,每一次迭代要涉及到一个函数值和一个导数值的计算,它的几何背景是用曲线上的某一点处的切线与X轴交点的坐标值产生下一个根的近似值。牛顿迭代法收敛速度快,具有二阶收敛速度( 一种直观解释是迭代一次,有效数位数增加一倍),但它是一种局部收敛的方法。理论基础是如下的泰勒中值定理
f ( x ) = f ( x n ) + ( x − x n ) f ′ ( x n ) + 1 2 ( x − x n ) 2 f ′ ′ ( ξ n ) \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{xn})+(\mathrm{x}-\mathrm{xn}) f^{\prime}(x n)+\frac{1}{2}(x-x n)^{2} f^{\prime \prime}(\xi n) f(x)=f(xn)+(xxn)f(xn)+21(xxn)2f(ξn)
割线法不是单点迭代,在每一次迭代中要用前两个根的近似值计算产生第三个近似根。迭代过程中不用计算函数的导数,只需计算函数值。它的几何背景是用曲线上两个不同点联结的割线与X轴交点的坐标值产生新的根的近似值,也是一种局部收敛方法,收敛速度不如牛顿迭代法快,具有1.618阶的收敛速度( p 2 − p − 1 = 0 p^{2}-\mathrm{p}-1=0 p2p1=0的正根),理论基础是如下的牛顿插值公式
f ( x ) = f ( x n ) + ( x − x n ) f [ x n , x n − 1 ] + f ′ ′ ( ξ n ) 2 ( x − x n ) ( x − x n − 1 ) \mathrm{f}(\mathrm{x})=\mathrm{f}(\mathrm{xn})+(\mathrm{x}-\mathrm{xn}) f\left[x n, x_{n-1}\right]+\frac{f^{\prime \prime}(\xi n)}{2}(x-x n)\left(x-x_{n-1}\right) f(x)=f(xn)+(xxn)f[xn,xn1]+2f(ξn)(xxn)(xxn1)


8. 叙述水中浮球问题,并写出数学模型。

水中浮球问题可以看做一个木质球体漂浮在水中,假设木质球体半径R =10 cm,密度 ρ=0.638. 求浸入水中的深度d 是多少?
V = ∫ 0 d π ( R 2 − ( R − x ) 2 ) d x = 1 3 π d 2 ( 3 R − d ) \mathrm{V}=\int_{0}^{d} \pi\left(R^{2}-(R-x)^{2}\right) \mathrm{dx}=\frac{1}{3} \pi d^{2}(3 R-d) V=0dπ(R2(Rx)2)dx=31πd2(3Rd)
根据阿基米德原理——浮力大小等于排开水的重量
4 3 π R 3 ρ = 1 3 π d 2 ( 3 R − d ) d 3 − 3 R d 2 + 4 R 3 ρ = 0 \frac{4}{3} \pi R^{3} \rho=\frac{1}{3} \pi d^{2}(3 R-d) \quad d^{3}-3 R d^{2}+4 R^{3} \rho=0 34πR3ρ=31πd2(3Rd)d33Rd2+4R3ρ=0
代入d和ρ即可求得d
在这里插入图片描述

  • 3
    点赞
  • 10
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值