Policy-Based Reinforcement Learning(基于策略的强化学习)详解
Policy-Based Reinforcement Learning 是强化学习的一个主要分支,与基于值的方法(Value-Based Methods)不同,它直接学习策略(Policy),而不是间接通过学习值函数来推导策略。策略直接映射状态到动作,因此在复杂环境中尤其适用,例如高维连续动作空间和策略优化。
1. 什么是 Policy-Based RL?
在 Policy-Based RL 中,强化学习智能体的目标是直接优化策略函数 ( \pi(a|s; \theta) ),使其在每个状态下采取的动作能够最大化累积奖励。
-
策略函数表示为:
[
\pi(a|s; \theta)
]
其中:- ( a ):动作
- ( s ):状态
- ( \theta ):策略的参数(可以是线性参数、神经网络权重等)
-
目标:最大化智能体在所有状态下的期望累积奖励 ( J(\theta) ),即:
[
J(\theta) = \mathbb{E}\pi \left[ \sum{t=0}^\infty \gamma^t R_t \right]
]
其中 ( \gamma ) 是折扣因子,用于平衡短期和长期奖励。
2. Policy-Based RL 的核心特点
-
直接学习策略:
- Policy-Based RL 直接优化策略,不需要通过值函数间接推导策略。
-
适合连续动作空间:
- 基于值的方法在高维或连续动作空间中计算 ( \arg \max Q(s, a) ) 可能效率低下,而基于策略的方法无需显式搜索动作。
-
支持随机策略:
- 可以学习随机策略 ( \pi(a|s; \theta) ),使动作以某种概率分布选择,这在多样性需求较高的场景中非常有用。
-
策略的平滑更新:
- 策略参数的优化通过梯度方法进行,是一种相对稳定的更新方式。
-
适用复杂场景&#x