时序差分(Temporal Difference, TD)学习的详细介绍-ChatGPT4o作答

时序差分(Temporal Difference, TD)学习的详细介绍

时序差分(Temporal Difference, TD)是一种强化学习中重要的价值函数估计方法,结合了动态规划(Dynamic Programming)蒙特卡洛方法(Monte Carlo)的优点。它通过从经验中直接学习预测值,而不需要完整的回报序列,能够高效地处理马尔科夫决策过程(Markov Decision Process, MDP)

以下内容将从原理、数学推导、TD方法的种类、优缺点及应用场景等方面详细介绍时序差分学习。


1. 时序差分学习的基本思想

时序差分学习的目标是估计价值函数。价值函数可以是:

  • 状态值函数:( V^\pi(s) ),即从状态 ( s ) 开始按照策略 ( \pi ) 行动所能获得的期望累计奖励。
    [
    V^\pi(s) = \mathbb{E}\pi \left[ \sum{k=0}^\infty \gamma^k r_{t+k+1} \mid s_t = s \right]
    ]
  • 状态-动作值函数:( Q^\pi(s, a) ),即从状态 ( s ) 开始执行动作 ( a ),后续按照策略 ( \pi ) 行动所能获得的期望累计奖励。
    [
    Q^\pi(s, a) = \mathbb{E}\pi \left[ \sum{k=0}^\infty \gamma^k r_{t+k+1} \mid s_t = s, a_t = a \right]
    ]
核心思想:
  • TD方法不需要等到整个回报序列结束才进行更新(如蒙特卡洛方法需要等到回合结束)。
  • 它通过当前奖励 ( r_t )对下一状态的价值估计 ( V(s_{t+1}) ) 来更新当前状态的价值函数 ( V(s_t) )。
更新公式(以状态值为例):
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值