matlab中的cvpartition---ChatGPT4o作答+mathworks官方文档

cvpartition 是 MATLAB 中用于将数据集分割成训练集和测试集的函数,广泛应用于机器学习中的交叉验证(cross-validation)、持出法验证(holdout validation)、留一法验证(leave-one-out)等任务。通过不同的划分方式,cvpartition 可以帮助评估模型的性能,避免过拟合,并提高模型在未见数据上的泛化能力。

1. 功能概述

cvpartition 用于定义一个数据集的划分方案,支持以下几种划分类型:

  • KFold:K折交叉验证
  • Holdout:持出法验证
  • Leaveout:留一法验证
  • Resubstitution:重新插入法验证
  • CustomPartition:自定义划分

通过创建一个 cvpartition 对象,用户可以定义数据如何被划分,并且可以方便地提取训练集和测试集的索引。

2. 创建 cvpartition

创建 cvpartition 的基本语法是:

c = cvpartition(n, 'KFold', k)
c = cvpartition(n, 'Holdout', p)
c = cvpartition(group, 'KFold', k)
c = cvpartition(group, 'Holdout', p)
c = cvpartition(n, 'Leaveout')
c = cvpartition(n, 'Resubstitution')
c = cvpartition('CustomPartition', testSets)
  • n:数据集的样本数量。
  • k:K折交叉验证中的折数。
  • p:在持出法验证中的测试集比例或样本数量。
  • group:一个分组变量,用于进行分层抽样。
  • testSets:自定义的测试集分配方式。

3. 创建方式及其解释

1. KFold交叉验证

c = cvpartition(n, 'KFold', k) 创建一个随机非分层的 K 折交叉验证。它将数据集划分为 k 个子集(folds),每次选择一个子集作为测试集,其余子集作为训练集。

c = cvpartition(100, 'KFold', 5);

上面的代码会将 100 个样本数据分为 5 个子集,每个子集作为一次验证中的测试集。

2. Holdout验证

c = cvpartition(n, 'Holdout', p) 用于持出法验证,将数据集分为训练集和测试集。p 是测试集占比,表示测试集的比例(如 0.2 表示 20% 的数据为测试集,剩余的 80% 为训练集)。

c = cvpartition(100, 'Holdout', 0.2);

这会将 100 个样本数据中 20% 随机选为测试集,剩余 80% 为训练集。

3. Leave-One-Out (LOO) 交叉验证

c = cvpartition(n, 'Leaveout') 创建一个留一法交叉验证。每次从数据集选择一个样本作为测试集,其余样本作为训练集。它适用于小数据集。

c = cvpartition(100, 'Leaveout');

这会生成一个 100 折的留一法交叉验证,每次选择一个样本作为测试集。

4. Resubstitution

c = cvpartition(n, 'Resubstitution') 表示不对数据进行划分,所有数据都用来训练和测试。

c = cvpartition(100, 'Resubstitution');

这会将所有 100 个样本用于训练和测试。

5. 自定义划分

c = cvpartition('CustomPartition', testSets) 允许用户根据自定义的测试集划分方式来创建 cvpartition。例如,指定哪些样本属于哪个测试集。

testSets = [1 2 2 1 3 3 1 2 3 2];
c = cvpartition('CustomPartition', testSets);

在这个例子中,testSets 定义了一个 3 折交叉验证的划分方式。

4. 主要属性

  • NumObservations:返回数据集中的总观察数(包括缺失的组值)。
  • NumTestSets:返回测试集的数量。对于 KFold 或 Leaveout,返回折数;对于 Holdout 或 Resubstitution,返回 1。
  • TestSize:返回每个测试集的大小。
  • TrainSize:返回每个训练集的大小。
  • Type:返回划分类型,可以是 'kfold''holdout''leaveout''resubstitution'
  • IsCustom:指示是否为自定义划分(true 或 false)。

5. 常用方法

  • training(c):返回训练集的索引。

    idxTrain = training(c);
    
  • test(c):返回测试集的索引。

    idxTest = test(c);
    
  • repartition(c):重新划分数据,生成一个新的 cvpartition 对象。

  • test(c, i):返回第 i 次划分中的测试集索引。

  • training(c, i):返回第 i 次划分中的训练集索引。

6. 应用实例

1. 交叉验证估计模型准确度

通过交叉验证误差估计模型如何在新数据上表现。例如,使用支持向量机(SVM)进行分类训练,并计算其交叉验证误差。

load fisheriris
c = cvpartition(species, 'KFold', 5);  % 5折交叉验证
SVMModel = fitcsvm(meas, species, 'CVPartition', c);  % 创建 SVM 模型
cvMdl = crossval(SVMModel);  % 进行交叉验证
cvError = kfoldLoss(cvMdl);  % 计算交叉验证误差
2. 创建 Stratified KFold(分层交叉验证)

通过分层交叉验证来保证每个子集中的类别比例相同,适用于类别不平衡的数据集。

c = cvpartition(species, 'KFold', 5, 'Stratify', true);  % 创建分层的 5 折交叉验证
3. 持出法验证

将数据划分为训练集和测试集,使用 Holdout 验证方法。

c = cvpartition(100, 'Holdout', 0.3);  % 按 30% 测试集和 70% 训练集划分数据
idxTrain = training(c);  % 获取训练集索引
idxTest = test(c);  % 获取测试集索引
4. 自定义划分

使用自定义的测试集划分方式进行交叉验证。

testSets = [1 1 2 2 3 3];  % 自定义 3 折交叉验证
c = cvpartition('CustomPartition', testSets);  % 创建自定义划分

7. 总结

cvpartition 是 MATLAB 中用于数据集划分的重要工具,它为各种验证任务(如 K 折交叉验证、持出法验证、留一法验证等)提供了灵活的数据划分方案。通过使用 cvpartition,我们可以有效地进行模型评估,避免过拟合,并确保模型在未知数据上的泛化能力。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值