- 博客(6)
- 资源 (1)
- 收藏
- 关注
原创 澳门大学科技学院蔡忠亚教授研究团队海洋科学方向2026年招生简章
蔡忠亚教授现为澳门大学科技学院教授,是海洋环境科学领域的杰出学者。蔡教授在香港科技大学获得博士学位并完成博士后研究,并在中国海洋大学获得硕士及本科学位。
2025-04-27 21:36:06
458
原创 Python 绘制海洋地形与散点数据分布图
读取地形数据(ETOPO1),提取目标区域水深信息。生成随机散点数据,并叠加到地图上。自定义地图样式,包括地形、散点、色标、边框和经纬度设置。
2025-03-24 20:47:53
492
原创 Unet:图像分割的强大工具
U-Net 是一种广泛应用于图像分割任务的卷积神经网络架构。它由 Olaf Ronneberger 等人在 2015 年提出,最初用于生物医学图像分割,但随着其高效性和灵活性,它已被广泛应用于诸如遥感、医学图像处理和目标检测等领域。本文将详细介绍 U-Net 的原理、算法实现及其 TensorFlow 实现方法。
2024-11-26 11:59:24
3313
原创 VGG16:深度卷积神经网络的经典之作
VGG16,全称为 Visual Geometry Group 16-layer network,由牛津大学的 Visual Geometry Group 提出。它在 2014 年的 ImageNet 大规模视觉识别挑战赛(ILSVRC)中取得了优异的成绩,证明了深度卷积神经网络在图像分类任务中的强大能力VGG16 是一个非常经典的卷积神经网络架构,它以其简洁的设计、出色的性能和广泛的应用而备受瞩目。通过本文的介绍,相信大家对 VGG16 的基本原理有了更深入的了解。
2024-11-25 19:09:35
2752
原创 深入理解 ResNet:深度残差网络
什么是 ResNet?ResNet 的核心思想ResNet 的网络架构ResNet的优势ResNet 的实现(PyTorch 示例)ResNet的影响随着深度学习的发展,网络的层数变得越来越深。然而,研究发现,更深的网络并不总能带来更好的性能。梯度消失或爆炸:随着网络加深,反向传播中的梯度可能会消失或爆炸,导致模型难以训练。**退化问题:即使没有梯度问题,增加网络层数反而会导致训练误差增大,这意味着更深的网络并未有效学到更多的特征。为了解决这些问题,ResNet 提出了 “残差学习” 的概念。
2024-11-25 12:59:29
1490
原创 ICP算法、Robust_ICP算法
关于点云配准算法的一些总结点云配准算法ICP,以及稳健回归的ICP算法本科毕业设计做的点云配准相关方面的工作,为此把做的内容做以下总结。控制点选择方法点云采样,是从整体的点云数据中按照一定的规则选取部分点云数据的过程。进行点云配准时,需要选择控制点,理论上要求至少需要三组不共线的对应点进行配准。为提高配准精度,选择特征明显的控制点进行配准,采样是一种比较高效的方法。随机采样 ,即按照随机原则,等概论抽取点云数据,抽样的结果具有偶然性,结果分布不均匀呈现杂乱状,如图3-1b。因此,随机采样会引入许
2020-08-09 14:24:30
2463
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人