Java解洛谷P1509 找啊找啊找GF,包含完整的二维费用背包状态转移方程,大量注释,通俗易懂

10 篇文章 0 订阅

01.题目及链接

题目链接:https://www.luogu.com.cn/problem/P1509
在这里插入图片描述
在这里插入图片描述

02.二维背包状态转移方程说明

有n件物品,两种不同的费用,选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和 b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]

状态转移方程

定义状态:dp[k][i][j]背包两种容量分别为i,j的情况下,前k件物品可选择时物品的最大价值

dp[k][i][j]=Math.max(dp[k-1][i][j], dp[k-1][i-a[k]][j-b[k]]+w[k]) //a[k]<=i && b[k]<=j
dp[k][i][j]=dp[k-1][i][j];    //不满足条件:a[k]<=i && b[k]<=j

具体案例

		for (int k = 1; k <= n; k++) //有n件物品
			for (int i = 1; i <= V; i++)  //背包最大容量V
				for (int j = 1; j <= U; j++) {	//背包最大容量U
					if(i>=a[k]&&j>=b[k]) {
						dp[k][i][j]=Math.max(dp[k-1][i][j], dp[k-1][i-a[k][j-b[k]+1);
					}else {
						dp[k][i][j]=dp[k-1][i][j];
					}
				}

状态压缩

dp[i][j]=Math.max(dp[i][j], dp[i-a[k][j-b[k]+w[k])   //逆向推导(从大到小)

具体案例

		for (int k = 1; k <= n; k++) 
			for (int i = V; i >= a[k]; i--) 
				for (int j = U; j >= b[k]; j--) 
					dp[i][j] = dp[i - a[k][j - b[k]] + w[k];

03.解题思路

3.1解题思路

定义状态:

  1. dp[i][j]表示rmb为i,rp为j时能约到最多MM的数量
  2. dpTime[i][j]表示rmb为i,rp为j时能约到最多MM的数量所需要的时间

状态转移:

dp[i][j]

dp[i][j] = dp[i - rmb[k]][j - rp[k]] + 1;

dpTime[i][j]

if (dp[i -rmb[k]][j - rp[k]] + 1 > dp[i][j]) {
	dp[i][j] = dp[i - rmb[k]][j - rp[k]] + 1;
	dpTime[i][j] = dpTime[i - rmb[k]][j - rp[k]] + time[k];
}
if ((dp[i][j] == dp[i - rmb[k]][j - rp[k]] + 1)
	&& dpTime[i][j] > dpTime[i - rmb[k]][j - rp[k]] + time[k]) {
	dpTime[i][j] = dpTime[i - rmb[k]][j - rp[k]] + time[k];
}

3.2具体代码

public static void main(String[] args) {
		Scanner in = new Scanner(System.in);
		int n = in.nextInt();
		int[][] data = new int[n + 1][3];
		for (int i = 1; i <= n; i++) {
			data[i][0] = in.nextInt();// rmb
			data[i][1] = in.nextInt();// rp
			data[i][2] = in.nextInt();// time
		}
		int rmb = in.nextInt(), rp = in.nextInt();
		//dp[i][j]表示rmb为i,rp为j时能约到最多MM的数量
		int[][] dp = new int[rmb + 1][rp + 1];
		//dpTime[i][j]表示rmb为i,rp为j时能约到最多MM的数量所需要的时间
		int[][] dpTime = new int[rmb + 1][rp + 1];

		for (int k = 1; k <= n; k++) {
			for (int i = rmb; i >= data[k][0]; i--) {
				for (int j = rp; j >= data[k][1]; j--) {

					if (dp[i - data[k][0]][j - data[k][1]] + 1 > dp[i][j]) {
						dp[i][j] = dp[i - data[k][0]][j - data[k][1]] + 1;
						dpTime[i][j] = dpTime[i - data[k][0]][j - data[k][1]] + data[k][2];
					}
					if ((dp[i][j] == dp[i - data[k][0]][j - data[k][1]] + 1)
					&& dpTime[i][j] > dpTime[i - data[k][0]][j - data[k][1]] + data[k][2]) {
						dpTime[i][j] = dpTime[i - data[k][0]][j - data[k][1]] + data[k][2];
					}
				}
			}
		}
		System.out.println(dpTime[rmb][rp]);
	}

04.更多背包学习

https://blog.csdn.net/qq_46237746/article/details/123908504

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值