ES(Elasticsearch)是一个基于Lucene搜索引擎的分布式搜索和分析引擎,而倒排索引是Lucene的核心机制之一,也是ES中最重要的机制之一。
在传统的索引机制中,我们以文档为中心建立索引,即根据文章的标题、正文、标签等信息,将文章存储到索引中;当用户查询时,通过对全文的扫描筛选出满足条件的文章,然后再按照相关度排序返回给用户。
而倒排索引机制则是以词汇为中心建立索引。具体来说,对于每个文档,我们将其中的每个词汇都存储起来,并记录下该词汇所在的文档之间的关系。例如,如果一个文档中包含“汽车”和“安全”两个词汇,那么倒排索引中就会存储“汽车”->文档1、“安全”->文档1的信息。
这个过程称为倒排,因为词汇和文档之间的逻辑关系被反向存储了。这样建立索引的好处是,当我们查询某个关键词时,在倒排索引中只需要简单地检查该词汇对应文档的列表,就可以快速地返回所有相关
举个例子:
假设我们有以下三个文档:
文档1: "我喜欢开快车"
文档2: "我喜欢开慢车"
文档3: "我喜欢骑自行车"
倒排索引的建立过程如下:
1. 分词:将每个文档中的内容进行分词,得到关键词列表如下:
文档1: ["我", "喜欢", "开", "快车"]
文档2: ["我", "喜欢", "开", "慢车"]
文档3: ["我", "喜欢", "骑", "自行车"]
2. 建立倒排索引:将每个关键词和它所在的文档建立关联,得到倒排索引如下:
"我" -> [文档1, 文档2, 文档3]
"喜欢" -> [文档1, 文档2, 文档3]
"开" -> [文档1, 文档2]
"快车" -> [文档1]
"慢车" -> [文档2]
"骑" -> [文档3]
"自行车" -> [文档3]
这样,我们就建立了一个倒排索引,其中每个关键词都与它所在的文档列表进行了关联。当用户查询某个关键词时,我们只需要查询倒排索引中对应词汇的文档列表,就可以快速地找到相关的文档。
例如,如果用户查询关键词"喜欢开车",我们可以通过倒排索引快速找到文档1和文档2,因为它们包含了"喜欢"和"开"这两个关键词。
这就是倒排索引的机制,它能够高效地进行关键词搜索,加速了搜索引擎的查询过程。