CF703D Mishka and Interesting sum

题目大意

给定 n n n 个数的序列 a a a

m m m 次操作。

操作有一种:

  • l r:求 a l ∼ a r a_l\sim a_r alar 中,出现偶数次的数的异或和。

1 ≤ n , m ≤ 1 0 6 1\le n,m\le 10^6 1n,m106 1 ≤ a i ≤ 1 0 9 1\le a_i\le 10^9 1ai109

解题思路

尝试转换题意,手玩 可知,出现偶数次的数的异或和 = = = 出现过数(出现多次算一个)的异或和 xor ⁡ \operatorname{xor} xor 所有数的异或和。
∵ x xor ⁡ x = 0 ∴ 所 有 数 的 异 或 和 中 = 出 现 偶 数 次 的 数 的 异 或 和 xor ⁡ 出 现 奇 数 次 的 数 的 异 或 和 。 ∴ 出 现 偶 数 次 的 数 的 异 或 和 = 出 现 过 数 ( 出 现 多 次 算 一 个 ) 的 异 或 和 xor ⁡ 所 有 数 的 异 或 和 。 \because x \operatorname{xor} x=0\\ \therefore 所有数的异或和中 = 出现偶数次的数的异或和 \operatorname{xor} 出现奇数次的数的异或和。\\ \therefore 出现偶数次的数的异或和 = 出现过数(出现多次算一个)的异或和 \operatorname{xor} 所有数的异或和。 xxorx=0=xor=xor
所有数异或和可以用前缀和维护。

出现过数(出现多次算一个)的异或和可以线性记录每一个数它之前出现过的位置 p r e pre pre

若他是第一个出现的数,他之前出现过的位置为 0 0 0

然后用树状数组维护即可。

即每次将这个点 x x x 加上 a [ x ] a[x] a[x],并将 p r e [ x ] pre[x] pre[x] 也加上 a [ x ] a[x] a[x]

那么若一个数在这段区间里出现过,那么在树状数组这段区间中他只 xor ⁡ \operatorname{xor} xor 过奇数次。

询问可以离线考虑,按右端点排序,可以达到 O ( n log ⁡ n ) \mathcal{O}(n \log n) O(nlogn) 的时间复杂度。

具体参考代码。

CODE

#include <bits/stdc++.h>

using namespace std;

inline int read()
{
	int x = 0, f = 1;
	char c = getchar();
	while(c < '0' || c > '9')
	{
		if(c == '-') f = -1;
		c = getchar();
	}
	while(c >= '0' && c <= '9')
	{
		x = x * 10 + c - '0';
		c = getchar();
	}
	return x * f;
}

inline void write(int x)
{
	if(x < 0)
	{
		putchar('-');
		x = -x;
	}
	if(x > 9) write(x / 10);
	putchar(x % 10 + '0');
}

const int _ = 1000007;

int c[_];

int n, m;

int a[_];

int sum[_];

int pre[_];

map<int, int> d;

int ans[_];

inline int lowbit(int x)
{
	return x & -x;
}

inline void update(int x, int val)
{
	if(x == 0) return;
	for(int i = x; i <= n; i += lowbit(i))
		c[i] ^= val;
}

inline int query(int x)
{
	if(x == 0) return 0;
	int res = 0;
	for(int i = x; i; i -= lowbit(i)) res ^= c[i];
	return res;
}

struct abc
{
	int l, r, id;
} q[_];

bool cmp(abc a, abc b)
{
	return a.r < b.r;
}

signed main()
{
	n = read();
	for(int i = 1; i <= n; ++i)
	{
		a[i] = read();
		sum[i] = sum[i - 1] ^ a[i];
		pre[i] = d[a[i]];
		d[a[i]] = i;
	}
	m = read();
	for(int i = 1; i <= m; ++i)
	{
		q[i].l = read();
		q[i].r = read();
		q[i].id = i;
	}
	sort(q + 1, q + m + 1, cmp);
	int tot = 0;
	for(int i = 1; i <= m; i++)
	{
		while(tot < q[i].r)
		{
			tot++;
			update(tot, a[tot]);
			update(pre[tot], a[pre[tot]]);
		}
		ans[q[i].id] = query(q[i].r) ^ query(q[i].l - 1) ^ sum[q[i].r] ^ sum[q[i].l - 1];
	}
	for(int i = 1; i <= m; ++i)
		cout << ans[i] << "\n";
	return 0;
}
内容概要:本文详细介绍了施耐德M580系列PLC的存储结构、系统硬件架构、上电写入程序及CPU冗余特性。在存储结构方面,涵盖拓扑寻址、Device DDT远程寻址以及寄存器寻址三种方式,详细解释了不同类型的寻址方法及其应用场景。系统硬件架构部分,阐述了最小系统的构建要素,包括CPU、机架和模块的选择与配置,并介绍了常见的系统拓扑结构,如简单的机架间拓扑和远程子站以太网菊花链等。上电写入程序环节,说明了通过USB和以太网两种接口进行程序下载的具体步骤,特别是针对初次下载时IP地址的设置方法。最后,CPU冗余部分重点描述了热备功能的实现机制,包括IP通讯地址配置和热备拓扑结构。 适合人群:从事工业自动化领域工作的技术人员,特别是对PLC编程及系统集成有一定了解的工程师。 使用场景及目标:①帮助工程师理解施耐德M580系列PLC的寻址机制,以便更好地进行模块配置和编程;②指导工程师完成最小系统的搭建,优化系统拓扑结构的设计;③提供详细的上电写入程序指南,确保程序下载顺利进行;④解释CPU冗余的实现方式,提高系统的稳定性和可靠性。 其他说明:文中还涉及一些特殊模块的功能介绍,如定时器事件和Modbus串口通讯模块,这些内容有助于用户深入了解M580系列PLC的高级应用。此外,附录部分提供了远程子站和热备冗余系统的实物图片,便于用户直观理解相关概念。
### CodeForces 上关于树状数组的题目列表 在CodeForces平台上,存在多个涉及树状数组的数据结构问题。以下是部分精选题目及其简短描述: #### 1. **799C - Fountains** 此题要求实现单点更新操作,在`A[]`数组中修改某一位置的值并相应地更新辅助数组`tree[]`。具体来说,当执行增加操作时,会通过循环不断更新受影响节点直到超出范围为止[^1]。 ```cpp void add(int k, int num) { while (k <= n) { tree[k] += num; k += k & (-k); } } ``` #### 2. **1042D - Array and Operations** 该挑战涉及到利用树状数组或线段树来高效处理特定类型的查询请求。核心思路在于将原始问题转化为计算前缀和中小于给定阈值的数量统计问题,从而简化了解决方案的设计过程[^2]。 #### 3. **1635F - Closest Pair** 这道难题不仅考察了参赛者对树状数组的理解程度,还测试了其解决复杂逻辑的能力。题目背景设定在一个有序序列基础上,目标是在指定范围内找到具有最小化评估函数的一对索引组合[^3]。 #### 4. **703D - Mishka and Interesting Contest** 本题聚焦于如何有效地求解区间内所有不同数值的异或结果。采用的方法是预先按右端点排序各区间,并记录每种元素最后一次出现的位置;之后借助树状数组完成后续所需的快速查找与更新工作[^4]。 这些例子展示了树状数组作为一种强大工具的应用场景,能够显著提升算法效率特别是在面对大规模数据集的情况下表现尤为突出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值