Codeforces Round 758 (Div.1 + Div.2) 解题报告

传送门

C o d e f o r c e s   R o u n d   758   ( D i v . 1 + D i v . 2 ) \rm Codeforces ~ Round ~ 758 ~ (Div.1 + Div.2) Codeforces Round 758 (Div.1+Div.2)

A. Find Array

给定 n n n,试找出 n n n 个数 a 1 , a 2 , ⋯   , a n a_1,a_2, \cdots,a_n a1,a2,,an,满足:

  • ∀ 1 ≤ i ≤ n , 1 ≤ a i ≤ 1 0 9 \forall 1 \leq i \leq n,1 \leq a_i \leq 10^9 1in,1ai109
  • a 1 < a 2 < ⋯ < a n a_1 < a_2 < \cdots < a_n a1<a2<<an
  • ∀ 2 ≤ i ≤ n , a i − 1 ∤ a i \forall 2\leq i \leq n,a_{i-1}\nmid a_i 2in,ai1ai

T T T 组数据。

对于 100 % 100\% 100% 的数据,满足 1 ≤ T ≤ 100 , 1 ≤ n ≤ 1000 1 \leq T \leq 100,1 \leq n \leq 1000 1T100,1n1000

sol

显然 2 , 3 , ⋯   , n + 1 2,3, \cdots,n+1 2,3,,n+1 是满足条件的一组解。

如果想不到的话,也可以输出前 n n n 个质数,这也是满足条件的一组解。

时间复杂度为 O ( T n ) \mathcal{O}(Tn) O(Tn)

#include <bits/stdc++.h>

using namespace std;

int T, n;

signed main()
{
	cin >> T;
	while(T--)
	{
		cin >> n;
		for(int i = 2; i <= n + 1; ++i) cout << i << " ";
		cout << "\n";
	}
}

B. Build the Permutation

给定 n , a , b n,a,b n,a,b,试找出 n n n 个数 p 1 , p 2 , ⋯   , p n p_1,p_2, \cdots,p_n p1,p2,,pn,满足有且仅有 a a a 个顶和 b b b 个谷。

定义:

  • p i − 1 < p i > p i + 1 p_{i-1} < p_i > p_{i+1} pi1<pi>pi+1,则称之为一个顶(其中 2 ≤ i ≤ n − 1 2\leq i \leq n-1 2in1)。
  • p i − 1 > p i < p i + 1 p_{i-1} > p_i < p_{i+1} pi1>pi<pi+1,则称之为一个谷(其中 2 ≤ i ≤ n − 1 2\leq i \leq n-1 2in1)。

T T T 组数据。

对于 100 % 100\% 100% 的数据,满足 1 ≤ T ≤ 1 0 4 , 2 ≤ n ≤ 1 0 5 , 0 ≤ a ≤ b ≤ n 1 \leq T \leq 10^4,2 \leq n \leq 10^5,0 \leq a \leq b \leq n 1T104,2n105,0abn

sol

显然如果 a + b + 2 > n a+b+2>n a+b+2>n,那么肯定无解。

然后,我们可以得出一个结论: ∣ a − b ∣ ≤ 1 |a-b| \leq 1 ab1

简单来说,若出现一个顶,那么必然带有一个谷,反之也是。

最后可能会多出来一个顶或谷。

分类讨论即可。

#include <bits/stdc++.h>

using namespace std;

int T, n, a, b;

signed main()
{
	cin >> T;
	while(T--)
	{
		cin >> n >> a >> b;
		if(a + b + 2 > n || abs(a - b) > 1)
		{
			puts("-1");
			continue;
		}
		if(a == b)
		{
			int lb = 1, ub = (a + 1) * 2;
			for(int i = 0; i <= a; ++i) printf("%d %d ", lb++, ub--);
			for(int i = (a + 1) * 2 + 1; i <= n; ++i) printf("%d ", i);
		}
		else
		{
			int rev = 0;
			if(b == a + 1) rev = 1, ++a;
			int lb = n - a - a + 1, ub = n;
			for(int i = 0; i < a; ++i) printf("%d %d ", (rev == 0 ? lb++ : n - (lb++) + 1), (rev == 0 ? ub-- : n - (ub--) + 1));
			for(int i = n - a - a; i > 0; --i) printf("%d ", (rev == 0 ? i : n - i + 1));
		}
		puts("");
	}
}

C. Game Master

n n n 名玩家在玩游戏。

每名玩家有两个属性值: a i a_i ai 代表在地图 A 比赛的力量, b i b_i bi 表示在地图 B 比赛的力量。

同一张地图里所有玩家的力量都不相同。

你可以安排 n − 1 n−1 n1 场比赛,每次可以选择任意比赛场地和任意两个未淘汰的玩家进行比赛。

比赛时,力量大的玩家获胜,失败则被淘汰。

现在要求求出:对于每个玩家,是否有可能通过某种安排使其获胜?

T T T 组数据。

对于 100 % 100\% 100% 的数据,满足 1 ≤ T ≤ 100 , 1 ≤ n ≤ 1 0 5 , 1 ≤ a i , b i ≤ 1 0 9 1 \leq T \leq 100,1 \leq n \leq 10^5,1 \leq a_i,b_i \leq 10^9 1T100,1n105,1ai,bi109

sol

我们对于地图 AB 中的所有玩家分别按照力量值排序,之后把力量大的向力量小的连边。

每个地图只连一个链,不需要连成完全图。

这两个地图在同一个图里连边。

之后发现这样连出的图里,一个环里的所有的玩家都可以赢。

找下环即可。

时间复杂度 O ( T n log ⁡ n ) \mathcal O(T n \log n) O(Tnlogn)

#include <bits/stdc++.h>

using namespace std;

const int _ = 100005;

#define pii pair<int, int>

int T, n;

vector<pii> a, b;

vector<int> d[_];

bool vis[_];

void dfs(int u)
{
	vis[u] = 1;
	for(int v : d[u])
	{
		if(!vis[v]) dfs(v);
	}
}

void init()
{
	a.clear();
	b.clear();
	for(int i = 0; i < _; i++)
	{
		d[i].clear();
		vis[i] = 0;
	}
}

signed main()
{
	cin >> T;
	while(T--)
	{
		init();
		cin >> n;
		for(int i = 0, x; i < n; i++)
		{
			cin >> x;
			a.push_back({x, i});
		}
		for(int i = 0, x; i < n; i++)
		{
			cin >> x;
			b.push_back({x, i});
		}
		sort(a.begin(), a.end());
		reverse(a.begin(), a.end());
		sort(b.begin(), b.end());
		reverse(b.begin(), b.end());
		for(int i = 1; i < a.size(); i++)
		{
			d[a[i].second].push_back(a[i - 1].second);
			d[b[i].second].push_back(b[i - 1].second);
		}
		dfs(a[0].second);
		dfs(b[0].second);
		for(int i = 0; i < n; i++)
			cout << vis[i];
		cout << "\n";
	}
	return 0;
}

t o   b e   c o n t i n u e d . . . \rm{to ~ be ~ continued...} to be continued...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值