背包问题边界总结

总结一下边界
- 求max/min的模型里:
- 求体积`恰好`为j:
- 求max, f = 【0】+【-inf】*t
- 求min, f = 【0】+【inf】*t
- 最终f【j】代表体积恰好为j时的价值极值。
---
- 求体积`至多`为j时:
- f【0】 = 【0】+【0】*t (max/min)
- 最终f【j】代表体积`至多`为j时的价值极值
---
- 求体积`至少`为j时:
- f【0】 = 【0】+【0】*t (max/min)
- 同时遍历体积需要修改循环下界v->0、转移需要修改为从max(0,j-v),即
`for j in range(self.vol, -1, -1):f【j】 = merge(f【j】, f【max(j - v,0)】 + w) # 01背包`
`for j in range(self.vol+1):f【j】 = merge(f【j】, f【max(j - v,0)】 + w) # 完全背包`
- 最终f【j】代表体积`至少`为j时的价值极值
---
- 求方案数的模型里(一般要取模):
- 求体积`恰好`为j:
- 求max, f = 【1】+【0】*t
- 最终f【j】代表体积恰好为j时的方案数。
---
- 求体积`至多`为j时:
- f = 【1】+【1】*t
- 最终f【j】代表体积`至多`为j时的方案数。
---
- 求体积`至少`为j时:
- f = 【1】+【0】*t
- 同时遍历体积需要修改循环下界v->0、转移需要修改为从max(0,j-v),即
`for j in range(self.vol, -1, -1):f【j】 += f【max(j - v,0)】 # 01背包`
`for j in range(self.vol+1):f【j】 += f【max(j - v,0)】 # 完全背包`
- 最终f【j】代表体积`至多少`为j时的方案数

01背包问题是动态规划中的一个经典问题,它的解法也非常经典,下面是我对该问题的动态规划总结。 1. 状态定义 定义一个二维数组dp[i][j],其中i表示当前考虑到第i个物品,j表示当前背包容量为j,dp[i][j]表示在前i个物品中,背包容量为j时的最大价值。 2. 状态转移方程 对于每个物品,我们可以选择将其放入背包,也可以选择不放入背包,因此状态转移方程如下: 如果不将第i个物品放入背包,则 dp[i][j] = dp[i - 1][j] 即前i-1个物品已经在容量为j的背包中的最大价值就是dp[i - 1][j]。 如果将第i个物品放入背包,则 dp[i][j] = dp[i-1][j-w[i]] + v[i] 即前i-1个物品在容量为j-w[i]的背包中的最大价值加上第i个物品的价值v[i]。 最终的状态转移方程为: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i]] + v[i]) 3. 边界条件 当物品数量为0时,dp[0][j]都等于0;当背包容量为0时,dp[i][0]都等于0。 4. 求解最优解 最终的最大价值为dp[n][W],其中n表示物品数量,W表示背包容量。 5. 代码实现 以下是01背包问题的动态规划代码实现,其中w和v分别表示物品的重量和价值,n和W表示物品数量和背包容量: ```python def knapsack(w, v, n, W): dp = [[0] * (W+1) for _ in range(n+1)] for i in range(1, n+1): for j in range(1, W+1): if j < w[i-1]: dp[i][j] = dp[i-1][j] else: dp[i][j] = max(dp[i-1][j], dp[i-1][j-w[i-1]] + v[i-1]) return dp[n][W] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值