#------------------------------------------------------------#
# R in Action (3rd ed): Chapter 7 #
# Basic statistics #
# requires the Hmisc, pastecs, psych, dplyr, carData, vcd #
# gmodels, ggm, and MASS packages #
# install.packages(c("Hmisc", "pastecs", "psych", "dplyr", #
# "carData", "vcd", "gmodels", "ggm", #
# "MASS")) #
#------------------------------------------------------------#
# Listing 7.1 Descriptive statistics with summary()
myvars <- c("mpg", "hp", "wt")
summary(mtcars[myvars])
# Listing 7.2 Descriptive statistics via sapply()
mystats <- function(x, na.omit=FALSE){
if (na.omit)
x <- x[!is.na(x)]
m <- mean(x)
n <- length(x)
s <- sd(x)
skew <- sum((x-m)^3/s^3)/n
kurt <- sum((x-m)^4/s^4)/n - 3
return(c(n=n, mean=m, stdev=s,
skew=skew, kurtosis=kurt))
}
myvars <- c("mpg", "hp", "wt")
sapply(mtcars[myvars], mystats)
# Listing 7.3 Descriptive statistics via describe() in the Hmisc package
library(Hmisc)
myvars <- c("mpg", "hp", "wt")
describe(mtcars[myvars])
# Listing 7.4 Descriptive statistics via stat.desc() in the pastecs package
library(pastecs)
myvars <- c("mpg", "hp", "wt")
stat.desc(mtcars[myvars])
# Listing 7.5 Descriptive statistics via describe() in the psych package
library(psych)
myvars <- c("mpg", "hp", "wt")
describe(mtcars[myvars])
# Listing 7.6 Descriptive statistics by group using by()
dstats <- function(x)sapply(x, mystats)
myvars <- c("mpg", "hp", "wt")
by(mtcars[myvars], mtcars$am, dstats)
# Listing 7.7 Descriptive statistics for groups defined by multiple variables
dstats <- function(x)sapply(x, mystats, na.omit=TRUE)
myvars <- c("mpg", "hp", "wt")
by(mtcars[myvars],
list(Transmission=mtcars$am,
Engine=mtcars$vs),
FUN=dstats)
# Section 7.1.4
# Summarizing data interactively with dplyr
library(dplyr)
library(carData)
Salaries %>%
summarize(med = median(salary),
min = min(salary),
max = max(salary))
Salaries %>%
group_by(rank, sex) %>%
summarize(n = length(salary),
med = median(salary),
min = min(salary),
max = max(salary))
Salaries %>%
group_by(rank, sex) %>%
select(yrs.service, yrs.since.phd) %>%
summarize_all(mean)
# Section 7.2
# Frequency tables
library(vcd)
head(Arthritis)
# one way table
mytable <- table(Arthritis$Improved)
mytable # counts
prop.table(mytable) # proportions
prop.table(mytable)*100 # percents
# two way table
mytable <- xtabs(~ Treatment+Improved, data=Arthritis)
mytable # counts
margin.table(mytable, 1) # total counts for Treatment
prop.table(mytable, 1) # row proportions (rows add to 1)
margin.table(mytable, 2) # total counts for Improved
prop.table(mytable, 2) # column proportions (columns add to 1)
prop.table(mytable) # cell proportions (all cells add to 1)
addmargins(mytable) # cell counts with row and column sums
addmargins(prop.table(mytable)) # cell proportions with row and column proportions
addmargins(prop.table(mytable, 1), 2) # row proportions with row sums
addmargins(prop.table(mytable, 2), 1) # column proportions with column sums
# Listing 7.8 Two-way table using CrossTable
library(gmodels)
CrossTable(Arthritis$Treatment, Arthritis$Improved)
# Listing 7.9 Three-way contingency table
mytable <- xtabs(~ Treatment+Sex+Improved, data=Arthritis)
mytable
margin.table(mytable, 1) # totals for Treatment
margin.table(mytable, 2) # totals for Sex
margin.table(mytable, 3) # totals for Improved
margin.table(mytable, c(1, 3)) # totals for Treatment by Improved
# Treatment by Sex for each Level of Improved
ftable(mytable)
ftable(prop.table(mytable, c(1, 2))) # proportions sum to 1 over index omitted
ftable(addmargins(prop.table(mytable, c(1, 2)), 3))
ftable(addmargins(prop.table(mytable, c(1, 2)), 3)) * 100
# Listing 7.10 Chi-square test of independence
library(vcd)
mytable <- xtabs(~Treatment+Improved, data=Arthritis)
chisq.test(mytable)
mytable <- xtabs(~Improved+Sex, data=Arthritis)
chisq.test(mytable)
# Fisher's exact test
mytable <- xtabs(~Treatment+Improved, data=Arthritis)
fisher.test(mytable)
# Chochran-Mantel-Haenszel test
mytable <- xtabs(~Treatment+Improved+Sex, data=Arthritis)
mantelhaen.test(mytable)
# Listing 7.11 Measures of association for a two-way table
library(vcd)
mytable <- xtabs(~Treatment+Improved, data=Arthritis)
assocstats(mytable)
# Listing 7.12 Covariances and correlations
states<- state.x77[,1:6]
cov(states)
cor(states)
cor(states, method="spearman")
x <- states[,c("Population", "Income", "Illiteracy", "HS Grad")]
y <- states[,c("Life Exp", "Murder")]
cor(x,y)
# partial correlations
library(ggm)
colnames(states)
pcor(c(1,5,2,3,6), cov(states))
# Listing 7.13 Testing a correlation coefficient for significance
cor.test(states[,3], states[,5])
# Listing 7.14 Correlation matrix and tests of significance via corr.test()
library(psych)
corr.test(states, use="complete")
# t-tests
library(MASS)
t.test(Prob ~ So, data=UScrime)
sapply(UScrime[c("U1","U2")], function(x)(c(mean=mean(x),sd=sd(x))))
with(UScrime, t.test(U1, U2, paired=TRUE))
# Mann-Whitney U-test
with(UScrime, by(Prob, So, median))
wilcox.test(Prob ~ So, data=UScrime)
sapply(UScrime[c("U1","U2")], median)
with(UScrime, wilcox.test(U1, U2, paired=TRUE))
# Kruskal-Wallis test
states <- data.frame(state.region, state.x77)
kruskal.test(Illiteracy ~ state.region, data=states)
# Listing 7.15 Nonparametric multiple comparisons
source("https://rkabacoff.com/RiA/wmc.R")
states <- data.frame(state.region, state.x77)
wmc(Illiteracy ~ state.region, data=states, method="holm")
# Nonparametric pairwise multiple comparisons using the Wilcoxon Signed Rank Test
# Probability values are adjusted using the p.adjust function
wmc <- function(formula, data, exact=FALSE, sort=TRUE, method="holm"){
# setup
df <- model.frame(formula, data)
y <- df[[1]]
x <- as.factor(df[[2]])
# reorder levels of x by median y
if(sort){
medians <- aggregate(y, by=list(x), FUN=median)[2]
index <- order(medians)
x <- factor(x, levels(x)[index])
}
groups <- levels(x)
k <- length(groups)
# summary statistics
stats <- function(z)(c(N = length(z), Median = median(z), MAD = mad(z)))
sumstats <- t(aggregate(y, by=list(x), FUN=stats)[2])
rownames(sumstats) <- c("n", "median", "mad")
colnames(sumstats) <- groups
cat("Descriptive Statistics\n\n")
print(sumstats)
# multiple comparisons
mc <- data.frame(Group.1=character(0),
Group.2=character(0),
W=numeric(0),
p.unadj=numeric(0),
p=numeric(0),
stars=character(0),
stringsAsFactors=FALSE)
# perform Wilcoxon test
row <- 0
for(i in 1:k){
for(j in 1:k){
if (j > i){
row <- row + 1
y1 <- y[x==groups[i]]
y2 <- y[x==groups[j]]
test <- wilcox.test(y1, y2, exact=exact)
mc[row,1] <- groups[i]
mc[row,2] <- groups[j]
mc[row,3] <- test$statistic
mc[row,4] <- test$p.value
}
}
}
mc$p <- p.adjust(mc$p.unadj, method=method)
# add stars
mc$stars <- " "
mc$stars[mc$p < .1] <- "."
mc$stars[mc$p < .05] <- "*"
mc$stars[mc$p < .01] <- "**"
mc$stars[mc$p < .001] <- "***"
names(mc)[6] <- " "
cat("\nMultiple Comparisons (Wilcoxon Rank Sum Tests)\n")
cat(paste("Probability Adjustment = ", method, "\n\n", sep=""))
print(mc[-4], right=TRUE)
cat("---\nSignif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1\n")
return(invisible(NULL))
}
R语言实战(第3版)第七章代码
于 2023-12-03 22:14:27 首次发布