邻域、去心邻域
平面上以Z0为中心,δ(任意的正数)为半径的圆:|Z-Z0|<δ 内部的点的集合称为Z0的邻域,而称由不等式0<|Z-Z0|<δ所确定的点集为Z0的去心邻域。
内点、开集
设G为一平面点集,Z0为G中任意一点,如果存在Z0的一个邻域,该邻域内的所有点都属于G,那么称Z0为G的内点。如果G内的每个点都是它的内点,那么称G为开集。
区域
平面点集D称为一个区域,如果满足下列两个条件:
1.D是一个开集;
2.D是连通的,就是说D中任何两点都可以用完全属于D的一条折线连接起来。
边界、边界点
设D为复平面内的一个区域,如果点P不属于D,但在P的任意小的邻域内总包含有D中的点,这样的点P我们称为D的边界点。D的所有边界点组成D的边界。区域的边界可能是由几条曲线和一些孤立的点所组成的。(图1.11)
有界区域、无界区域
区域D与它的边界一起构成闭区域或避域,记作D`
如果一个区域D可以被包含在一个以原点为中心的圆里面,即存在正数M,使区域D的每个点z都满足|z|<M,那么D称为M有界的,否则称为无界的。
在复变函数中,区域是一个重要的概念,它指的是复平面上的一个连通开集。为了更清晰地理解这个概念,我们可以从以下几个方面进行阐述:
1. 复平面
复平面是一个二维平面,其中每一个点都对应一个复数。这个平面由实轴(对应于复数的实部)和虚轴(对应于复数的虚部)垂直相交而成。复数 z = x + y i z = x + yi z=x+yi(其中 x , y ∈ R x, y \in \mathbb{R} x,y∈R)在复平面上由点 ( x , y ) (x, y) (x,y) 表示。
2. 开集
在复平面上,一个集合 D D D 被称为开集,如果对于 D D D 中的每一个点 z 0 z_0 z0,都存在一个以 z 0 z_0 z0 为中心、某个正实数 r r r 为半径的开圆盘 { z ∈ C : ∣ z − z 0 ∣ < r } \{ z \in \mathbb{C} : |z - z_0| < r \} {z∈C:∣z−z0∣<r},该开圆盘完全包含在 D D D 中。换句话说,开集中的每一点都是其内部点,即在该点周围总有一个完全属于该集合的小邻域。
3. 连通性
一个集合 D D D 在复平面上被称为连通的,如果对于 D D D 中的任意两点 z 1 z_1 z1 和 z 2 z_2 z2,都存在一条完全位于 D D D 中的路径(可以是曲线)连接 z 1 z_1 z1 和 z 2 z_2 z2。这种连通性保证了集合中的点不是孤立存在的,而是可以通过某种方式相互“到达”。
4. 区域的定义
综合以上概念,我们可以定义复平面上的区域为一个既开又连通的集合。这样的集合在复变函数的研究中非常重要,因为很多复变函数的性质(如解析性、积分性质等)都是在区域上定义的。
5. 例子
- 单位圆盘: { z ∈ C : ∣ z ∣ < 1 } \{ z \in \mathbb{C} : |z| < 1 \} {z∈C:∣z∣<1} 是一个区域,因为它既是开集(对于圆盘内的任意点,都可以找到一个以该点为中心、半径小于1的开圆盘完全包含在单位圆盘中),也是连通的(圆盘内的任意两点都可以通过圆盘内的线段连接)。
- 上半平面: { z ∈ C : Im ( z ) > 0 } \{ z \in \mathbb{C} : \text{Im}(z) > 0 \} {z∈C:Im(z)>0} 也是一个区域,它包含了复平面上所有虚部大于0的点,既是开集也是连通的。
6. 区域的边界
虽然区域本身不包含其边界点,但边界的概念对于理解区域的性质也很重要。一个区域的边界通常定义为不属于该区域但与其任意小的邻域都有交点的点的集合。例如,单位圆盘的边界是单位圆 { z ∈ C : ∣ z ∣ = 1 } \{ z \in \mathbb{C} : |z| = 1 \} {z∈C:∣z∣=1}。
通过以上阐述,我们可以更全面地理解复变函数中区域的概念及其重要性。