剑指 Offer 42. 连续子数组的最大和

剑指 Offer 42. 连续子数组的最大和

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为O(n)。

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6

思路:动态规划,dp[i]代表数组前i个的连续最大值;

class Solution {
    public int maxSubArray(int[] nums) {
        int[] dp = new int[nums.length];
        // base case 
        dp[0] = nums[0];
        int max = dp[0];
        for(int i = 1; i < nums.length;i++){
			// 做比较,不想调用API的话可以用三元表达式
            dp[i] = Math.max(dp[i-1] + nums[i],nums[i]);
            max = Math.max(max,dp[i]);
        }
        return max;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值