7-1 两个有序序列的中位数 (25 分)

已知有两个等长的非降序序列S1, S2, 设计函数求S1与S2并集的中位数。有序序列A​0​​,A​1​​,⋯,A​N−1​​的中位数指A​(N−1)/2​​的值,即第⌊(N+1)/2⌋个数(A​0​​为第1个数)。

输入格式:

输入分三行。第一行给出序列的公共长度N(0<N≤100000),随后每行输入一个序列的信息,即N个非降序排列的整数。数字用空格间隔。

输出格式:

在一行中输出两个输入序列的并集序列的中位数。

输入样例1:

5
1 3 5 7 9
2 3 4 5 6

输出样例1:

4

输入样例2:

6
-100 -10 1 1 1 1
-50 0 2 3 4 5

输出样例2:

1

方法一:

#include <bits/stdc++.h>
using namespace std;

int main()
{
    int n;
    cin >> n;
    vector<int> v;
    for (int i = 0; i < 2*n; i++)
    {
        int a;
        cin >> a;
        v.push_back(a);
    }
    sort(v.begin(), v.end());
    cout << v[(v.size()-1)/2] << endl;
    return 0;
}

方法二:

#include <bits/stdc++.h>
using namespace std;

const int maxn = 100010;

int main()
{
    int n;
    cin >> n;
    int arr1[maxn], arr2[maxn], arr[2*maxn];
    for (int i = 0; i < n; i++)
        cin >> arr1[i];
    for (int i = 0; i < n; i++)
        cin >> arr2[i];

    int i = 0, j = 0;
    for (int k = 0; k < 2*n; k++)
    {
        if ( arr1[i] >= arr2[j] || (i == n)) {
            arr[k] = arr2[j++];
        }
        else if (arr1[i] < arr2[j] || (j == n)) {
            arr[k] = arr1[i++];
        }
    }
    cout << arr[(2*n-1)/2];
}

 

题目描述: 给定两个长度别为m和n的有序序列,求其中位数。 输入格式: 第一行输入一个整数m,表示第一个有序序列的长度。 第二行输入m个整数,表示第一个有序序列。 第三行输入一个整数n,表示第二个有序序列的长度。 第四行输入n个整数,表示第二个有序序列。 输出格式: 输出一个整数,表示两个有序序列中位数。 输入样例: 5 1 3 5 7 9 6 2 4 6 8 10 12 输出样例: 7 算法1: (二查找) $O(log(min(m,n)))$ 1.先确定中位数的位置,如果m+n为奇数,则中位数位置为(m+n+1)/2,如果为偶数,则中位数位置为(m+n)/2和(m+n)/2+1。 2.在两个有序序列别进行二查找,找到第一个序列中第k/2个数和第二个序列中第k/2个数,比较两个数的大小,如果第一个序列中的数小,则第一个序列中前k/2个数都不可能是中位数,将第一个序列中前k/2个数舍去,更新k值,继续在剩下的数中查找中位数。 3.重复步骤2,直到找到中位数。 时间复杂度 二查找的时间复杂度为O(log(min(m,n))),因此总时间复杂度为O(log(min(m,n)))。 C++ 代码 算法2: (归并排序) $O(m+n)$ 1.将两个有序序列合并成一个有序序列。 2.如果合并后的序列长度为奇数,则中位数为合并后序列的中间位置的数,如果长度为偶数,则中位数为中间位置的两个数的平均值。 时间复杂度 归并排序的时间复杂度为O(m+n),因此总时间复杂度为O(m+n)。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

imByte

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值