首先对于 1 x + 1 y = 1 n ! \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} x1+y1=n!1
x和y必然有一个数是大于n!的,那么我们可以假设y是大于n!的,那么式子可以化为
1
x
+
1
n
!
+
k
=
1
n
!
\frac{1}{x}+\frac{1}{n!+k}=\frac{1}{n!}
x1+n!+k1=n!1
化简后为
x
=
n
!
2
k
+
n
!
x=\frac{n!^2}{k}+n!
x=kn!2+n!
由上式子可以看出当x为正整数时,k必须要整除 n ! 2 n!^2 n!2,即 n ! 2 n!^2 n!2的每个约数都对应一对x和y
那么问题就变成了求解 n ! 2 n!^2 n!2的约数个数,根据约数个数求出即可
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
const int N=1e6+5;
int prime[N],cnt;
bool st[N];
int d[N];
void get_prime(int n)
{
for(int i=2;i<=n;i++)
{
if(!st[i]) prime[cnt++]=i;
for(int j=0;prime[j]<=n/i;j++)
{
st[prime[j]*i]=true;
if(i%prime[j]==0) break;
}
}
}
int Cnt(int x,int n)
{
ll t=x;
ll res=0;
while(t<=n)
{
res+=n/t;
t=t*x;
}
return res;
}
int main()
{
int n;
cin>>n;
get_prime(n);
for(int i=0;i<cnt;i++)
d[prime[i]]=Cnt(prime[i],n);
ll ans=1;
for(int i=0;i<cnt;i++)
{
int x=prime[i];
if(d[x])
{
ans=ans*(d[x]*2+1)%mod;
}
}
cout<<ans%mod<<endl;
return 0;
}