樱花

题目传送门

首先对于 1 x + 1 y = 1 n ! \frac{1}{x}+\frac{1}{y}=\frac{1}{n!} x1+y1=n!1

x和y必然有一个数是大于n!的,那么我们可以假设y是大于n!的,那么式子可以化为
1 x + 1 n ! + k = 1 n ! \frac{1}{x}+\frac{1}{n!+k}=\frac{1}{n!} x1+n!+k1=n!1
化简后为 x = n ! 2 k + n ! x=\frac{n!^2}{k}+n! x=kn!2+n!

由上式子可以看出当x为正整数时,k必须要整除 n ! 2 n!^2 n!2,即 n ! 2 n!^2 n!2的每个约数都对应一对x和y

那么问题就变成了求解 n ! 2 n!^2 n!2的约数个数,根据约数个数求出即可

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;

const int N=1e6+5;
int prime[N],cnt;
bool st[N];

int d[N];

void get_prime(int n)
{
	for(int i=2;i<=n;i++)
	  {
	  	if(!st[i]) prime[cnt++]=i;
	  	for(int j=0;prime[j]<=n/i;j++)
	  	  {
	  	  	 st[prime[j]*i]=true;
	  	  	 if(i%prime[j]==0) break;
		  }
	  }
}

int Cnt(int x,int n)
{
	ll t=x;
	ll res=0;
	while(t<=n)
	  {
	  	res+=n/t;
	  	t=t*x;
	  }
	return res;
}

int main()
{
	int n;
	cin>>n;
	get_prime(n);
	for(int i=0;i<cnt;i++)
	  d[prime[i]]=Cnt(prime[i],n);
	
	ll ans=1;
	for(int i=0;i<cnt;i++)
	  {
	  	int x=prime[i];
	  	if(d[x])
	  	  {
	  	  	ans=ans*(d[x]*2+1)%mod;
		  }
	  }
	cout<<ans%mod<<endl;
	return 0;
	
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值