P2671 [NOIP2015 普及组] 求和 题解

[NOIP2015 普及组] 求和

题目背景

NOIP2015 普及组 T3

题目描述

一条狭长的纸带被均匀划分出了 n n n个格子,格子编号从 1 1 1 n n n。每个格子上都染了一种颜色 c o l o r i color_i colori [ 1 , m ] [1,m] [1,m]当中的一个整数表示),并且写了一个数字 n u m b e r i number_i numberi

定义一种特殊的三元组: ( x , y , z ) (x,y,z) (x,y,z),其中 x , y , z x,y,z x,y,z都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

  1. x y z xyz xyz是整数, x < y < z , y − x = z − y x<y<z,y-x=z-y x<y<z,yx=zy

  2. c o l o r x = c o l o r z colorx=colorz colorx=colorz

满足上述条件的三元组的分数规定为 ( x + z ) × ( n u m b e r x + n u m b e r z ) (x+z) \times (number_x+number_z) (x+z)×(numberx+numberz)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以 10 , 007 10,007 10,007所得的余数即可。

输入格式

第一行是用一个空格隔开的两个正整数 n n n m , n m,n m,n表纸带上格子的个数, m m m表纸带上颜色的种类数。

第二行有 n n n用空格隔开的正整数,第 i i i数字 n u m b e r number number表纸带上编号为 i i i格子上面写的数字。

第三行有 n n n用空格隔开的正整数,第 i i i数字 c o l o r color color表纸带上编号为 i i i格子染的颜色。

输出格式

一个整数,表示所求的纸带分数除以 10007 10007 10007所得的余数。

样例 #1

样例输入 #1

6 2
5 5 3 2 2 2
2 2 1 1 2 1

样例输出 #1

82

样例 #2

样例输入 #2

15 4
5 10 8 2 2 2 9 9 7 7 5 6 4 2 4
2 2 3 3 4 3 3 2 4 4 4 4 1 1 1

样例输出 #2

1388

提示

【输入输出样例 1 说明】

纸带如题目描述中的图所示。

所有满足条件的三元组为: ( 1 , 3 , 5 ) , ( 4 , 5 , 6 ) (1, 3, 5), (4, 5, 6) (1,3,5),(4,5,6)

所以纸带的分数为 ( 1 + 5 ) × ( 5 + 2 ) + ( 4 + 6 ) × ( 2 + 2 ) = 42 + 40 = 82 (1 + 5) \times (5 + 2) + (4 + 6) \times (2 + 2) = 42 + 40 = 82 (1+5)×(5+2)+(4+6)×(2+2)=42+40=82

对于第 1 1 1 组至第 2 2 2 组数据, 1 ≤ n ≤ 100 , 1 ≤ m ≤ 5 1 ≤ n ≤ 100, 1 ≤ m ≤ 5 1n100,1m5

对于第$ 3$ 组至第 4 4 4 组数据, 1 ≤ n ≤ 3000 , 1 ≤ m ≤ 100 1 ≤ n ≤ 3000, 1 ≤ m ≤ 100 1n3000,1m100

对于第 5 5 5 组至第$ 6 $组数据, 1 ≤ n ≤ 100000 , 1 ≤ m ≤ 100000 1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000 1n100000,1m100000,且不存在出现次数超过$ 20 $的颜色;

对 于 全 部 10 10 10 组 数 据 , 1 ≤ n ≤ 100000 , 1 ≤ m ≤ 100000 , 1 ≤ c o l o r i ≤ m , 1 ≤ n u m b e r i ≤ 100000 1 ≤ n ≤ 100000, 1 ≤ m ≤ 100000, 1 ≤ color_i ≤ m,1≤number_i≤100000 1n100000,1m100000,1colorim,1numberi100000

题解

首先来看这个什么三元组。
定义一种特殊的三元组:(x,y,z)(x,y,z),其中x,y,zx,y,z都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

  1. x,y,z 是整数, x < y < z , y − x = z − y x < y < z , y − x = z − y x<y<z,y-x=z-yx<y<z,y−x=z−y x<y<z,yx=zyx<y<z,yx=zy
  2. x,z 颜色相同

满足上述条件的三元组的分数规定为 ( x + z ) × ( n u m b e r x + n u m b e r z ) (x+z) \times (number_x+number_z) (x+z)×(numberx+numberz)。诶,我们发现,这个「分数」跟 yy 之间,半个咕值的关系都没有啊 QAQ?

于是,秒懂 😮

∵ y − x = z − y ∴ x + z = 2 y \because y-x=z-y \\ \therefore x+z=2y yx=zyx+z=2y

又, 2 y 2y 2y 是偶数,所以 x , z x,z x,z 同奇偶。这就是 y y y 的用处啦QAQ。

由于不同颜色的 x , z x,z x,z 肯定不会产生分数,所以我们可以先把这个「狭长的纸带」按照颜色分类,最后把每种颜色产生的分数加起来即可。

然后不同奇偶性的 x , z x,z x,z 也不会产生分数,所以把每个颜色种类按照奇偶性再分个类,最后把奇数产生的分数和偶数产生的分数加起来即可。

格子编号12345678910
格子上的数字5532227825
格子颜色2211212221
  • 颜色为 1 的:
格子编号34610
格子上的数字3225
格子颜色1111
  • 颜色为 2 的:
格子编号125789
格子上的数字552782
格子颜色222222

再按照编号分类

  • 颜色为 1 ,编号为奇数的:
格子编号3
格子上的数字3
格子颜色1
  • 颜色为 1 ,编号为偶数的:
格子编号4610
格子上的数字225
格子颜色111
  • 颜色为 2 ,编号为奇数的:
格子编号1579
格子上的数字5272
格子颜色2222
  • 颜色为 2 ,编号为偶数的:
格子编号28
格子上的数字58
格子颜色22

那么,怎么计算分数呢?

当然可以 O(n^2) 暴力算一通。做法显然,这里不多说了。不过,复杂度铁定爆炸。

考虑更优的做法。

拿上面那个例子中,颜色为 2 ,编号为奇数的 4 个格子来举个例子:

由于颜色显然是一样的,而且计算分数也和颜色无关,所以就不用再管颜色了。

然后设 f [ i ] f[i] f[i] 为这一组中第 i i i 个数的编号, n [ i ] n[i] n[i] 为这一组中第 i i i 的数的颜色。

i1234
f [ i ] f[i] f[i]1579
n [ i ] n[i] n[i]5272

先看前两个数,他们产生的分数为:
( f [ 1 ] + f [ 2 ] ) × ( n [ 1 ] + n [ 2 ] ) (f[1]+f[2])\times(n[1]+n[2]) (f[1]+f[2])×(n[1]+n[2])
然后考虑当第三个数加入时,多出来的分数。

第三个数和第一个数会产生一些分数:
( f [ 1 ] + f [ 3 ] ) × ( n [ 1 ] + n [ 3 ] ) (f[1]+f[3])\times(n[1]+n[3]) (f[1]+f[3])×(n[1]+n[3])
第三个数和第二个数也会产生一些分数:
( f [ 2 ] + f [ 3 ] ) × ( n [ 2 ] + n [ 3 ] ) (f[2]+f[3])\times(n[2]+n[3]) (f[2]+f[3])×(n[2]+n[3])

所以多出来的分数为:
( f [ 1 ] + f [ 3 ] ) × ( n [ 1 ] + n [ 3 ] ) + ( f [ 2 ] + f [ 3 ] ) × ( n [ 2 ] + n [ 3 ] ) (f[1]+f[3])\times(n[1]+n[3])+(f[2]+f[3])\times(n[2]+n[3]) (f[1]+f[3])×(n[1]+n[3])+(f[2]+f[3])×(n[2]+n[3])
展开后,得到:
f [ 1 ] ⋅ n [ 1 ] + f [ 1 ] ⋅ n [ 3 ] + f [ 3 ] ⋅ n [ 1 ] + f [ 3 ] ⋅ n [ 3 ] + f [ 2 ] ⋅ n [ 2 ] + f [ 2 ] ⋅ n [ 3 ] + f [ 3 ] ⋅ n [ 2 ] + f [ 3 ] ⋅ n [ 3 ] f[1]\cdot n[1]+f[1]\cdot n[3]+f[3]\cdot n[1]+f[3]\cdot n[3]+f[2]\cdot n[2]+f[2]\cdot n[3]+f[3]\cdot n[2]+f[3]\cdot n[3] f[1]n[1]+f[1]n[3]+f[3]n[1]+f[3]n[3]+f[2]n[2]+f[2]n[3]+f[3]n[2]+f[3]n[3]
n [ 3 ] n[3] n[3] f [ 3 ] f[3] f[3] 提取出来:
f [ 1 ] ⋅ n [ 1 ] + f [ 1 ] ⋅ n [ 3 ] + f [ 3 ] ⋅ n [ 1 ] + f [ 3 ] ⋅ n [ 3 ] + f [ 2 ] ⋅ n [ 2 ] + f [ 2 ] ⋅ n [ 3 ] + f [ 3 ] ⋅ n [ 2 ] + f [ 3 ] ⋅ n [ 3 ] ( 标 红 的 是 提 取 出 来 的 n [ 3 ] n [ 3 ] , 标 蓝 的 是 提 取 出 来 的 f [ 3 ] f [ 3 ] ) f[1]\cdot n[1]+\color{red}f[1]\cdot n[3]\color{black}+\color{skyblue}f[3]\cdot n[1]\color{black}+\color{red}f[3]\cdot n[3]\color{black}+f[2]\cdot n[2]+\color{red}f[2]\cdot n[3]\color{black}+\color{skyblue}f[3]\cdot n[2]\color{black}+\color{skyblue}f[3]\cdot n[3] \\(标红的是提取出来的 n[3]n[3],标蓝的是提取出来的 f[3]f[3]) f[1]n[1]+f[1]n[3]+f[3]n[1]+f[3]n[3]+f[2]n[2]+f[2]n[3]+f[3]n[2]+f[3]n[3]n[3]n[3]f[3]f[3]

n [ 3 ] ⋅ ( f [ 1 ] + f [ 2 ] + f [ 3 ] ) + f [ 3 ] ⋅ ( n [ 1 ] + n [ 2 ] + n [ 3 ] ) + n [ 1 ] ⋅ f [ 1 ] + n [ 2 ] ⋅ f [ 2 ] n[3]\cdot(f[1]+f[2]+ f[3])+f[3]\cdot(n[1]+n[2]+n[3])+n[1]\cdot f[1]+n[2]\cdot f[2] n[3](f[1]+f[2]+f[3])+f[3](n[1]+n[2]+n[3])+n[1]f[1]+n[2]f[2]

从这个式子中,我们看出,只需要处理 f f f 数组, n n n 数组,还有 f [ i ] ⋅ n [ i ] f[i]\cdot n[i] f[i]n[i] 的前缀和即可。

后面也是一个一个添加进来,一样的。

到了这一步之后,代码实现基本已经没有任何难度了=_=

代码实现

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<climits>
#include<cmath>
using namespace std;
long long n,m,num[100005],cont[2][100005],cl;
long long sum1[3][100005],sum2[3][100005];
long long ans;
int main()
{
    scanf("%lld%lld",&n,&m);
    for(int i=1;i<=n;i++)scanf("%lld",&num[i]);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&cl);
        if(i%2==1)
        {
            ans=(ans+sum1[0][cl]%10007+i*sum1[1][cl]%10007+num[i]*sum1[2][cl]%10007+cont[0][cl]*i*num[i]%10007)%10007;
            sum1[0][cl]=(sum1[0][cl]+num[i]*i)%10007;
            sum1[1][cl]=(sum1[1][cl]+num[i])%10007;
            sum1[2][cl]=(sum1[2][cl]+i)%10007;
            cont[0][cl]++;
        }
        else
        {
            ans=(ans+sum2[0][cl]%10007+i*sum2[1][cl]%10007+num[i]*sum2[2][cl]%10007+cont[1][cl]*i*num[i]%10007)%10007;
            sum2[0][cl]=(sum2[0][cl]+num[i]*i)%10007;
            sum2[1][cl]=(sum2[1][cl]+num[i])%10007;
            sum2[2][cl]=(sum2[2][cl]+i)%10007;
            cont[1][cl]++;
        }
    }
    printf("%lld",ans%10007);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值