【题解】求和

题目描述

        一条狭长的纸带被均匀划分出了n个格子,格子编号从1到n。每个格子上都染了一种颜色colori(用[1,m]当中的一个整数表示),并且写了一个数字numberi。

Failed to load picture

        定义一种特殊的三元组:(x,y,z),其中x,y,z都代表纸带上格子的编号,这里的三元组要求满足以下两个条件:

        1、x,y,z都是整数,x<y<z,y-x=z-y;

        2、colorx=colorz;

        满足上述条件的三元组的分数规定为(x+z)×(numberx+numberz)。整个纸带的分数规定为所有满足条件的三元组的分数的和。这个分数可能会很大,你只要输出整个纸带的分数除以10007所得的余数即可。

 

输入格式

        第一行是用一个空格隔开的两个正整数n和m,n代表纸带上格子的个数,m代表纸带上颜色的种类数。

        第二行有n个用空格隔开的正整数,第i个数字numberi代表纸带上编号为i的格子上面写的数字。

 

输出格式

        共一行,一个整数,表示所求的纸带分数除以10007所得的余数。

 

输入样例

6 2

5 5 3 2 2 2

2 2 1 1 2 1

 

 

输出样例

82

 

数据规模

        对于全部10组数据,1≤n≤100000,1≤m≤100000,1≤colori≤m,1≤numberi≤100000。

 

题解

        其实这种题关键是要拿出笔来推一下,拆一拆并一并,整理完之后其实就很简单了。


 

        (提前声明,这里为了方便,用$a$表示$number$,用$b$表示$color$)

        观察题目,我们可以把条件一转换成$x$和$z$的奇偶性相同。

        又有条件二要求$b[x] = b[z]$。

        此时我们先设一个$x$,现在我们要求满足上面条件的有关$x$的三元组的和,又设这些三元组的数量为$cnt$,得到:

        $$\begin{align*} \sum_{i = 1}^{cnt}(x,  y_{i},  z_{i}) &= \sum_{i = 1}^{cnt}(x + z_{i}) \times (a[x] + a[z_{i}]) \\ &= \sum_{i = 1}^{cnt} x \times a[x] + x \times a[z_{i}] + z_{i} \times a[x] + z_{i} \times a[z_{i}] \end{align*}$$

        我们又设$sum = a[x] + \sum_{i = 1}^{cnt} a[z_{i}]$,可以看出,对于$x$有关的部分也就是:

        $$ \sum_{i = 1}^{cnt}x \times a[x] + x \times a[z_{i}] = x \times sum + x \times a[x] \times (cnt - 1) $$

        对于每一个$x$,我们都可以预处理出对应的$cnt$和$sum$,直接求解就行了。具体细节可以看下面的代码。

#include <cstdio>

#define MAX_N 1000000
#define MAX_M 1000000
#define MOD 10007

using namespace std;

int n, m;
int a[MAX_N | 1];
int b[MAX_N | 1];
int c[MAX_M << 1 | 1];
int s[MAX_M << 1 | 1];
int ans;

int main()
{
    scanf("%d%d", &n, &m);
    for(register int i = 1; i <= n; ++i)
    {
        scanf("%d", &a[i]);
    }
    for(register int i = 1; i <= n; ++i)
    {
        scanf("%d", &b[i]);
        ++c[b[i] + m * (i & 1)];
        s[b[i] + m * (i & 1)] += a[i];
        s[b[i] + m * (i & 1)] %= MOD;
    }
    for(register int i = 1; i <= n; ++i)
    {
        ans += (long long)i * a[i] * (c[b[i] + m * (i & 1)] - 2) % MOD;
        ans += (long long)i * s[b[i] + m * (i & 1)] % MOD;
        ans %= MOD;
    }
    printf("%d", ans);
    return 0;
}
参考程序

 

转载于:https://www.cnblogs.com/kcn999/p/11195232.html

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
06-01
这道题是一道典型的费用限制最短路题目,可以使用 Dijkstra 算法或者 SPFA 算法来解决。 具体思路如下: 1. 首先,我们需要读入输入数据。输入数据包含了道路的数量、起点和终点,以及每条道路的起点、终点、长度和限制费用。 2. 接着,我们需要使用邻接表或邻接矩阵来存储图的信息。对于每条道路,我们可以将其起点和终点作为一个有向边的起点和终点,长度作为边权,限制费用作为边权的上界。 3. 然后,我们可以使用 Dijkstra 算法或 SPFA 算法求解从起点到终点的最短路径。在这个过程,我们需要记录到每个点的最小费用和最小长度,以及更新每条边的最小费用和最小长度。 4. 最后,我们输出从起点到终点的最短路径长度即可。 需要注意的是,在使用 Dijkstra 算法或 SPFA 算法时,需要对每个点的最小费用和最小长度进行松弛操作。具体来说,当我们从一个点 u 经过一条边 (u,v) 到达另一个点 v 时,如果新的费用和长度比原来的小,则需要更新到达 v 的最小费用和最小长度,并将 v 加入到优先队列(Dijkstra 算法)或队列(SPFA 算法)。 此外,还需要注意处理边权为 0 或负数的情况,以及处理无法到达终点的情况。 代码实现可以参考以下样例代码: ```c++ #include <cstdio> #include <cstring> #include <queue> #include <vector> using namespace std; const int MAXN = 1005, MAXM = 20005, INF = 0x3f3f3f3f; int n, m, s, t, cnt; int head[MAXN], dis[MAXN], vis[MAXN]; struct Edge { int v, w, c, nxt; } e[MAXM]; void addEdge(int u, int v, int w, int c) { e[++cnt].v = v, e[cnt].w = w, e[cnt].c = c, e[cnt].nxt = head[u], head[u] = cnt; } void dijkstra() { priority_queue<pair<int, int>, vector<pair<int, int>>, greater<pair<int, int>>> q; memset(dis, 0x3f, sizeof(dis)); memset(vis, 0, sizeof(vis)); dis[s] = 0; q.push(make_pair(0, s)); while (!q.empty()) { int u = q.top().second; q.pop(); if (vis[u]) continue; vis[u] = 1; for (int i = head[u]; i != -1; i = e[i].nxt) { int v = e[i].v, w = e[i].w, c = e[i].c; if (dis[u] + w < dis[v] && c >= dis[u] + w) { dis[v] = dis[u] + w; q.push(make_pair(dis[v], v)); } } } } int main() { memset(head, -1, sizeof(head)); scanf("%d %d %d %d", &n, &m, &s, &t); for (int i = 1; i <= m; i++) { int u, v, w, c; scanf("%d %d %d %d", &u, &v, &w, &c); addEdge(u, v, w, c); addEdge(v, u, w, c); } dijkstra(); if (dis[t] == INF) printf("-1\n"); else printf("%d\n", dis[t]); return 0; } ```

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值