P1044 [NOIP2003 普及组] 栈

P1044 [NOIP2003 普及组] 栈

题目背景

栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。

栈有两种最重要的操作,即 pop(从栈顶弹出一个元素)和 push(将一个元素进栈)。

栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。

题目描述

宁宁考虑的是这样一个问题:一个操作数序列, 1 , 2 , … , n 1,2,\ldots ,n 1,2,,n(图示为 1 到 3 的情况),栈 A 的深度大于 n n n

现在可以进行两种操作,

  1. 将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的 push 操作)
  2. 将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的 pop 操作)

使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由 1 2 3 生成序列 2 3 1 的过程。

(原始状态如上图所示)

你的程序将对给定的 n n n,计算并输出由操作数序列 1 , 2 , … , n 1,2,\ldots,n 1,2,,n 经过操作可能得到的输出序列的总数。

输入格式

输入文件只含一个整数 n n n 1 ≤ n ≤ 18 1 \leq n \leq 18 1n18)。

输出格式

输出文件只有一行,即可能输出序列的总数目。

样例 #1

样例输入 #1

3

样例输出 #1

5

提示

【题目来源】

NOIP 2003 普及组第三题

1、递归/记忆化搜索

看这个数据,我总感觉dfs会超时,然后真的超了?(没试过),于是很自然的,我们就会想到记忆化搜索,这也是做这题的一种技巧吧,但无论如何,这也是最基础的

解题思路

递归归根到底就是两点 递归边界递归规则。递归的好处也在此,只需要考虑递归的关系和边界,中间一系列复杂的操作就不用顾忌 。下面谈谈搜索(递归)思路,其中 1为递归的关系式含义;2、3为递归边界;4为递归规则:

  1. 既然记忆化搜索了,定义一个二维数组 f [ i , j ] f[i,j] f[i,j]
    • 用下标 i i i 表示队列里还有几个待排的数,
    • j j j 表示栈里有 j j j 个数,
    • f [ i , j ] f[i,j] f[i,j] 表示此时的情况数
  2. 那么,更加自然的,只要 f [ i , j ] f[i,j] f[i,j]有值就直接返回;
  3. 然后递归如何实现呢?首先,可以想到,要是数全在栈里了,就只剩 1 1 1种情况了,所以: i = 0 i=0 i=0 时,返回 1 1 1
  4. 然后,有两种情况:一种栈空,一种栈不空。
    • 在栈空时,我们不可以弹出栈里的元素,只能进入,所以队列里的数 − 1 -1 1,栈里的数 + 1 +1 +1,即加上 f [ i − 1 , j + 1 ] f[i-1,j+1] f[i1,j+1]
    • 另一种是栈不空,那么此时有出栈 1 1 1个或者进 1 1 1个再出 1 1 1 2 2 2种情况,分别加上 f [ i − 1 , j + 1 ] f[i-1,j+1] f[i1,j+1] f [ i , j − 1 ] f[i,j-1] f[i,j1] ,便是此时的情况了,于是递归就愉快的结束了;

代码实现

#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N][MAX_N];
ll dfs(int i,int j)
{
//   if f[i][j]>0
	if(f[i][j]) return f[i][j]; 
	if(i==0)return 1; //边界 
	if(j>0) f[i][j]+=dfs(i,j-1);
	f[i][j]+=dfs(i-1,j+1);
	return f[i][j];
}
int main()
{
	scanf("%d",&n);
	printf("%lld",dfs(n,0));
	return 0;
}

2、递推 D P DP DP(动态规划)

我们只要顺着递归的思路来就好了:

  1. 据上面的递归,可知定义的 f [ i , j ] f[i,j] f[i,j] i = 0 i=0 i=0 时这个数组的值都为 1 1 1,同时,这也是递推边界。并且,我们用 i i i 表示已经进到过栈里的数(只要进过栈的都加上), j j j 表示出栈数, f [ i , j ] f[i,j] f[i,j] 表示情况数;
  2. 既然我们愉快地得到了递推思路,愣着干嘛,因为即使初始化了我们也不可能直接用递归的思路写出递归!所以开始找规律: f [ i , j ] f[i,j] f[i,j]到底与什么有着不可告人的联系?其实这个很容易可以想到:当 i i i 个数进栈, j − 1 j-1 j1 个数出栈的时候,只要再出一个数,便是 i i i 个数进栈, j j j 个数出栈的情况;同理,对于进栈 i − 1 i-1 i1 个数,出栈 j j j 个数,在进栈一个数便是 f [ i , j ] f[i,j] f[i,j] 了,于是就有了递归式: f [ i , j ] = f [ i ] [ j − 1 ] + f [ i − 1 ] [ j ] f[i,j]=f[i][j-1]+f[i-1][j] f[i,j]=f[i][j1]+f[i1][j].
  3. 然而事实上这还没有完,因为 i = j i=j i=j 时,很明显的 栈空了,那么,此时就必须进栈了,则有 f [ i , j ] = f [ i − 1 , j ] f[i,j]=f[i-1,j] f[i,j]=f[i1,j]

于是我们又快乐地解决了递推(其实就是 D P DP DP)的做法,其实与递归大同小异,只不过一个通过函数实现,一个通过循环实现。

#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N][MAX_N];
int main()
{
	scanf("%d",&n);
	for(int i=0;i<=n;i++)
	{
		f[0][i]=1;
	}
	for(int i=1;i<=n;i++)
	{
		for(int j=i;j<=n;j++)
		{
			if(i==j)f[i][j]=f[i-1][j];
			else f[i][j]=f[i][j-1]+f[i-1][j];
		}
	}
	printf("%lld",f[n][n]);
	return 0;
}

3、数论做法 卡特兰/Catalan

建立数组 f f f f [ i ] f[i] f[i] 表示 i i i 个数的全部可能性。

  • f [ 0 ] = 1 f[0] = 1 f[0]=1, f [ 1 ] = 1 f[1] = 1 f[1]=1,当然只有一个

  • x x x 为当前出栈序列的最后一个,则 x x x n n n 种取值。由于x是最后一个出栈的,所以可以将已经出栈的数分成两部分:

    1. x x x 小,比 x x x 小的数有 x − 1 x-1 x1 个,所以这些数的全部出栈可能为 f [ x − 1 ] f[x-1] f[x1]
    2. x x x 大,比 x x x 大的数有 n − x n-x nx 个,所以这些数的全部出栈可能为 f [ n − x ] f[n-x] f[nx]
    3. 这两部分互相影响,所以一个 x x x 的取值能够得到的所有可能性为 f [ x − 1 ] ∗ f [ n − x ] f[x-1]*f[n-x] f[x1]f[nx]
  • 另外,由于 x x x n n n 个取值,所以 a n s = f [ 0 ] ∗ f [ n − 1 ] + f [ 1 ] ∗ f [ n − 2 ] + . . . + f [ n − 1 ] ∗ f [ 0 ] ans = f[0]*f[n-1] + f[1]*f[n-2] + ... + f[n-1]*f[0] ans=f[0]f[n1]+f[1]f[n2]+...+f[n1]f[0]

这,就是传说中的卡特兰数,下面给出卡特兰数的递推式:

  • 递推式1: f [ n ] = f [ 0 ] ∗ f [ n − 1 ] + f [ 1 ] ∗ f [ n − 2 ] + . . . + f [ n − 1 ] ∗ f [ 0 ] ( n ≥ 2 ) f[n]=f[0]*f[n-1] + f[1]*f[n-2] + ... + f[n-1]*f[0] (n≥2) f[n]=f[0]f[n1]+f[1]f[n2]+...+f[n1]f[0](n2)
//数论做法 卡特兰数
//公式1:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N];
int main()
{
	f[0]=f[1]=1;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		for(int j=0;j<i;j++)
		{
			f[i]+=f[j]*f[i-j-1];
		}
	}
	printf("%lld",f[n]);
	return 0;
}
  • 递推式2: h [ n ] = h [ n − 1 ] ∗ ( 4 ∗ n − 2 ) / ( n + 1 ) h[n]=h[n-1]*(4*n-2)/(n+1) h[n]=h[n1](4n2)/(n+1)
//公式2:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll f[MAX_N];
int main()
{
	f[0]=f[1]=1;
	scanf("%d",&n);
	for(int i=2;i<=n;i++)
	{
		f[i]+=f[i-1]*(4*i-2)/(i+1);
	}
	printf("%lld",f[n]);
	return 0;
}
  • 递推式3: h [ n ] = C [ 2 n , n ] / ( n + 1 ) ( n = 0 , 1 , 2 , . . . ) h[n]=C[2n,n]/(n+1) (n=0,1,2,...) h[n]=C[2n,n]/(n+1)(n=0,1,2,...) C C C 是组合数
    • P S PS PS C [ m , n ] = C [ m − 1 , n − 1 ] + C [ m − 1 , n ] C[m,n]=C[m-1,n-1]+C[m-1,n] C[m,n]=C[m1,n1]+C[m1,n]
    • 且规定: C [ n , 0 ] = 1 C[n,0]=1 C[n,0]=1 C [ n , n ] = 1 C[n,n]=1 C[n,n]=1 C [ 0 , 0 ] = 1 C[0,0]=1 C[0,0]=1
    • 这个公式也叫组合数公式(下面那个也是)(不知道组合数可以百度)
//公式3:
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll c[MAX_N*2][MAX_N];
int main(){

    scanf("%d",&n);
    for(int i=1;i<=2*n;i++)
    {
    	c[i][0]=c[i][i]=1;
    	for(int j=1;j<i;j++)
    	{
    		c[i][j]=c[i-1][j]+c[i-1][j-1];
		}
	}
    printf("%lld",c[2*n][n]/(n+1));
    return 0;
}
  • 递推式4: h [ n ] = C [ 2 n , n ] − C [ 2 n , n − 1 ] ( n = 0 , 1 , 2 , . . . ) h[n]=C[2n,n]-C[2n,n-1] (n=0,1,2,...) h[n]=C[2n,n]C[2n,n1](n=0,1,2,...) ,组合数 C C C 不解释了;
//公式4: 
#include<cstdio>
#define MAX_N 20
#define ll long long
using namespace std;
int n;
ll c[MAX_N*2][MAX_N];
int main(){

    scanf("%d",&n);
    for(int i=1;i<=2*n;i++)
    {
    	c[i][0]=c[i][i]=1;
    	for(int j=1;j<i;j++)
    	{
    		c[i][j]=c[i-1][j]+c[i-1][j-1];
		}
	}
    printf("%lld",c[2*n][n]-c[2*n][n-1]);
    return 0;
}

但是有个Dalao写的组合数我没看懂,于是我搜集了各方资料,还是没看懂,不知道他写的组合数是怎么求的,虽然最后结果对了,但是组合数求出来都是错的( ̄_ ̄|||),不知道是不是巧合?

不管了,AC就好;(程序还是后面给~)

  • 但是,出现了一个问题,上面介绍了四种公式,哪种最好?其实是第 4 4 4 种:如果这个数太大,那么题目可能会要求取模,那么第 1 1 1 n n n 太大的时候时空太大;第 2 2 2 种在取模运算中万一不小心整除了就凉了;第 3 3 3 种是除法运算,更行不通;唯有第 4 4 4 种,满足取模原则(加减无所谓),且不会出现倍数 WA的情况,所以第 4 4 4 种解为最优解;
  • 接着,比较上面四种做法:很明显的,递推式长得差得不多,它们都源于卡特兰思想,那么就没什么好说的了,只是时空复杂度的不同而已;

总之,个人感觉还是前两种解法吧,本人最后一个数学功底真的不太行。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值