P1044 [NOIP2003 普及组] 栈题解

文章讲述了如何使用递归和动态规划的方法解决一个关于将N个不同小球放入单端封闭管的问题,计算所有可能的倒出序列总数。程序通过遍历和组合计算出管子中每个位置小球最后出管的总方式数。
摘要由CSDN通过智能技术生成

题目

有一个单端封闭的管子,将N(1<=N<=18)个不同的小球按顺序放入管子的一端。在将小球放入管子的过程中也可以将管子最顶上的一个或者多个小球倒出来。请问:倒出来的方法总数有多少种?

输入输出格式

输入格式

输入文件只含一个整数n(1≤n≤18)

输出格式

输出文件只有一行,即可能输出序列的总数目。

输入输出样例

输入样例

3

输出样例

5

解析

假设i个元素一共有h[i]种出管方式。要求n个元素的出管方式,但是其中每一个元素(从1到n)都可能是最后一个出管的。假设第k个小球是最后一个出管的,比k早入管且早出管有k-1个数,一共有h[k-1]种出管方式;比k晚入管且早出管有n-k个数,一共有h[n-k]种出管方式。这种情况下一共就有h[k-1]*h[n-k]种出管方式。当k取不同值的时候,产生的出管序列也是独立的。所以可以加起来。k的取值范围可以是从1到n。所以递推式是h(n)=h(0)*h(n-1)+h(1)*h(n-2)+……+h(n-1)*h(0),初始条件是h[0]=h[1]=1。

#include<cstdio>
int main(){
	int n,h[20]={1,1};
	scanf("%d",&n);
	for(int i=2;i<=n;i++){
		for(int j=0;j<i;j++){
			h[i]+=h[j]*h[i-j-1];
		}
	}
	printf("%d",h[n]);
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

互联网的猫

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值