Datawhale X 魔搭 AI夏令营 AIGC方向 Task03

参考教程

Docsicon-default.png?t=N7T8https://datawhaler.feishu.cn/wiki/QHSTwBPFKiZxqfkA1INc1u4fn0f?from=from_copylink

ComfyUI

ComfyUI简介

ComfyUI 是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术,ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。这些节点可以连接起来形成一个工作流程,这样用户就可以根据需要定制自己的图像生成过程。

ComfyUI图片生成流程

ComfyUI安装

使用魔搭社区提供的Notebook和免费的GPU算力来体验ComfyUI。

在魔搭平台-->我的Notebook-->魔搭平台免费实例中,选择“方式二”启动。

在终端中执行以下代码来安装 ComfyUI的执行文件 和 task1中微调完成Lora文件:

git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors_test_comfyui.git
mv kolors_test_comfyui/* ./
rm -rf kolors_test_comfyui/
mkdir -p /mnt/workspace/models/lightning_logs/version_0/checkpoints/
mv epoch=0-step=500.ckpt /mnt/workspace/models/lightning_logs/version_0/checkpoints/   

之后进入ComfyUI.ipynb一键执行所有单元格。

当输出“This is the URL to access ComfyUI”时,复制后面的网页链接到浏览器打开,即可进入预览界面。此流程大约需要10分钟。

ComfyUI工作流

不带Lora的工作流

下载参考教程中的“kolors_example.json”,在预览界面点击“Load”进行读取:

之后点击Queue Prompt进行生图:

带Lora的工作流

这里的Lora是Task01微调训练出来的文件

地址是:/mnt/workspace/models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt

如有其他的Lora文件,可以在Lora文件地址区域更换成其他地址

流程类似于上一部分介绍的工作流,不过这次需要加载带LoRA训练的工作流脚本“kolors_with_lora_example.json”。

LoRA微调

Lora简介

LoRA (Low-Rank Adaptation) 微调是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。这对于推动大规模预训练模型的实际应用至关重要。

LoRA通过在预训练模型的关键层中添加低秩矩阵来实现。这些低秩矩阵通常被设计成具有较低维度的参数空间,这样它们就可以在不改变模型整体结构的情况下进行微调。在训练过程中,只有这些新增的低秩矩阵被更新,而原始模型的大部分权重保持不变。

Lora详解

接下来针对Task02中的的微调代码进行深入了解。

import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
  --pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
  --pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
  --pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
  --lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
  --lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
  --dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
  --output_path ./models \ # 指定输出路径,用于保存模型
  --max_epochs 1 \ # 设置最大训练轮数为 1
  --center_crop \ # 启用中心裁剪,这通常用于图像预处理
  --use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
  --precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练    

参数详情

参数名称

参数值

说明

pretrained_unet_path

models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors

指定预训练UNet模型的路径

pretrained_text_encoder_path

models/kolors/Kolors/text_encoder

指定预训练文本编码器的路径

pretrained_fp16_vae_path

models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors

指定预训练VAE模型的路径

lora_rank

16

设置LoRA的秩(rank),影响模型的复杂度和性能

lora_alpha

4

设置LoRA的alpha值,控制微调的强度

dataset_path

data/lora_dataset_processed

指定用于训练的数据集路径

output_path

./models

指定训练完成后保存模型的路径

max_epochs

1

设置最大训练轮数为1

center_crop

启用中心裁剪,用于图像预处理

use_gradient_checkpointing

启用梯度检查点,节省显存

precision

"16-mixed"

设置训练时的精度为混合16位精度(half precision)

UNet、VAE和文本编码器

UNet负责根据输入的噪声和文本条件生成图像。在Stable Diffusion模型中,UNet接收由VAE编码器产生的噪声和文本编码器转换的文本向量作为输入,并预测去噪后的噪声,从而生成与文本描述相符的图像

VAE时生成模型,用于将输入数据映射到潜在空间,并从中采样以生成新图像。在Stable Diffusion中,VAE编码器首先生成带有噪声的潜在表示,这些表示随后与文本条件一起输入到UNet中

文本编码器将文本输入转换为模型可以理解的向量表示。在Stable Diffusion模型中,文本编码器使用CLIP模型将文本提示转换为向量,这些向量与VAE生成的噪声一起输入到UNet中,指导图像的生成过程

  • 24
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值