DL方少
码龄5年
关注
提问 私信
  • 博客:10,394
    10,394
    总访问量
  • 13
    原创
  • 2,220,370
    排名
  • 5
    粉丝
  • 0
    铁粉

个人简介:憨憨

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
  • 加入CSDN时间: 2020-02-29
博客简介:

qq_46439619的博客

查看详细资料
个人成就
  • 获得11次点赞
  • 内容获得12次评论
  • 获得55次收藏
创作历程
  • 13篇
    2021年
成就勋章
TA的专栏
  • 深度学习
    9篇
  • 自然语言处理
    2篇
  • 机器学习
    2篇
  • 笔记
兴趣领域 设置
  • 人工智能
    深度学习神经网络
创作活动更多

如何做好一份技术文档?

无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

180人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

seq2seq实现聊天机器人(代码)

import tensorflow as tffrom nlpia.loaders import get_datafrom keras.models import Model,load_modelfrom keras.layers import Input,LSTM,Denseimport osimport numpy as np#为训练准备语料库df=get_data('moviedialog')input_texts,target_texts=[],[]#数组保存从语料文库
原创
发布博客 2021.04.07 ·
820 阅读 ·
0 点赞 ·
2 评论 ·
7 收藏

自然语言处理之文本分类(代码)

实现新闻分类的代码如下:import tensorflow as tffrom keras.datasets import reutersimport numpy as npfrom keras import modelsfrom keras import layersfrom keras.preprocessing import sequencefrom keras.layers import Embedding,LSTM,SimpleRNNimport matplotlib.pyplo
原创
发布博客 2021.04.07 ·
911 阅读 ·
0 点赞 ·
0 评论 ·
11 收藏

变分自编码器(VAE)代码

#VAE编码器网络import tensorflow as tfimport kerasfrom keras import layersfrom keras import backend as Kfrom keras.models import Modelimport numpy as npfrom keras.datasets import mnistimport matplotlib.pyplot as pltfrom scipy.stats import normimg_
原创
发布博客 2021.02.05 ·
705 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

k-均值聚类

在二维空间中根据距离的邻近关系划分为两类假设:空间中有N个点,每个点的取值为{Xi},i=1,2…N,我们要把这N个点划分为K类对每个点设置一个隐含变量{Zi}i=1,2,…NZi的取值范围为1,2…K,为第i个点所属的类别Ck为第k类的中心k均值聚类的优化目标最小化:E(Zi,Ck)=1N∑i=1N∣∣Xi−Czi∣∣2E({Z_i,C_k})=\dfrac{1}{N}\sum_{i=1}^N||X_i-C_{z_i}||^2E(Zi​,Ck​)=N1​i=1∑N​∣∣Xi​−Czi​​
原创
发布博客 2021.01.31 ·
318 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

生成式对抗网络GAN

判别式模型和生成是模型的区别:假设研究对象为变量为x,类别变量为y,则:判别式模型:按照一定的判别准则,从数据中直接学习决策函数y=f(x)或者条件概率分布p(y|x;a)作为预测的模型典型的判别模型包括:k近邻法,决策树,最大熵模型,支持向量机等只是对给定的样本进行分类,不关心数据如何生成。生成式模型:从数据中学习联合概率分布p(x,y),其之后可以转变为p(y|x)作为预测模型,例如利用条件概率分布p(y|x)=p(x,y)/p(x)根据生成假设,哪个类别最有可能生成这个样本生成对抗网
原创
发布博客 2021.01.28 ·
232 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

GRU实现股票预测(代码)

在TensorFlow2.0,python3.7环境下运行先创建一个TensorFlow文件,文件名为tushareDemo,运行以下代码import tushare as tsimport matplotlib.pyplot as pltdf1=ts.get_k_data('600519',ktype='D',start='2010-04-26',end='2020-04-06')datapath1="./SH600519.csv"df1.to_csv(datapath1)再建一个Tens
原创
发布博客 2021.01.27 ·
3041 阅读 ·
5 点赞 ·
7 评论 ·
25 收藏

使用LSTM生成文本代码

import tensorflow as tfimport kerasimport numpy as npimport randomimport sysfrom keras import layers#下载并解析初试文本文件path=keras.utils.get_file( 'nietzsche.txt',origin='https://s3.amazonaws.com/text-dataset/nietzsche.txt')text=open(path).read().lowe
原创
发布博客 2021.01.24 ·
810 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

LSTM层和GRU层

RNN无法记住很多个时间步长之前出现过的信息,即长期依赖问题,也无法提取之前有效的记忆和存入当前有效的记忆,因此我们在记忆体内增加了一个记忆细胞来避免长期依赖问题。LSTM增加了一种携带信息跨越多个时间步的方法,假设有一条平行于你所处理的序列的传送带,能在任意时刻把重要的信息跳上传送带传到需要的时候再跳回来,它保存信息以便后面使用,从而防止较早的信息在处理过程中逐渐消失LSTM的整体框架用σ(sigmoid)函数控制信息保留程度,1为全保留,0为全抛弃用tanh函数把数据处理成候选值向量
原创
发布博客 2021.01.23 ·
1171 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

随机梯度下降算法

小批量随机梯度下降算法(小批量SGD)每次从从训练样本集上随机抽取一个小样本集,求其误差的平均值,作为目标函数,将参数沿着梯度的方向移动,从而使当前的目标函数减少得最多。小样本集的个数为batch_size,通常为2的幂次方,有利GPU加速代价函数的总和为1m∑i=1mL(x(i),y(i),θ)\dfrac{1}{m}\sum_{i=1}^mL(x^{(i)},y^{(i)},θ)m1​i=1∑m​L(x(i),y(i),θ)真SGD每次随机选取一个样本,batch_size=1遇上噪声容易陷
原创
发布博客 2021.01.22 ·
220 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

深度学习之循环神经网络(RNN)

卷积神经网络有些数据是与时间序列相关的,是可以根据上文预测出下文的,比如鱼离不开——,我们能根据上文预测出可能性最大的应该填“水”字,这种预测就是通过脑记忆体(循环核)提取历史数据特征,预测出接下来最可能发生的情况循环核:参数时间共享,循环层提取时间信息。记忆体(循环核)内存储着每个时刻的状态信息循环核:前向传播时:记忆体内存储的状态信息ht,在每个时刻都被刷新,三个参数矩阵wxh,whh,why自始至终都是固定不变的反向传播时:三个参数矩阵wxh,whh,why被梯度下降法更新。(我们的目
原创
发布博客 2021.01.21 ·
636 阅读 ·
0 点赞 ·
1 评论 ·
1 收藏

深度学习之激活函数

这是一个线性函数,对于线性函数,即使有多层神经元首尾相接,依旧是线性组合,模型的表达能力不够这个mp模型比上面的简化模型多了一个非线性函数,这个非线性函数叫作激活函数,它的加入大大提升了模型的表达力优秀的激活函数:非线性:激活函数非线性时,多层神经网络可逼近所有函数可微性 :优化器大多用梯度下降更新参数单调性:当激活函数是单调的,能保证单层网络的损失函数是凸函数近似恒等性:f(x)≈x当参数初始化为随机小值时,神经网络更稳定激活函数输出值的范围:激活函数输出值为有限值时,基于梯度的优化方法.
原创
发布博客 2021.01.21 ·
529 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

机器学习之朴素贝叶斯分类器

朴素贝叶斯分类器通过概率来判断样本属于哪一种分类考挂了喝酒
原创
发布博客 2021.01.15 ·
537 阅读 ·
4 点赞 ·
2 评论 ·
0 收藏

机器学习之决策树

#机器学习之决策树1 基本流程2 划分选择3 剪枝处理4 连续与缺失值##基本流程决策树是一类常见的机器学习方法。我们希望从给定的训练集建立一棵决策树,用来对新的事例进行分类。例如,我们要对“这是好瓜吗?”这样的问题进行决策,我们会根据瓜的色泽,根蒂,敲声等瓜的属性来进行判断,...
原创
发布博客 2021.01.13 ·
388 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏