一个算术数组是指至少包含两个整数,且相邻整数之间的差值都相等的整数数组。
例如,[9、10],[3、3、3][9、10],[3、3、3][9、10],[3、3、3] 和 [9、7、5、3][9、7、5、3][9、7、5、3] 是算术数组,而 [1、3、3、7][1、3、3、7][1、3、3、7],[2、1、2][2、1、2][2、1、2],和 [1、2、4][1、2、4][1、2、4] 不是算术数组。
Sarasvati 有一个包含 NNN 个非负整数的数组,其中的第 iii 个整数为 AiA_iAi。
她想从数组中选择一个最大长度的连续算术子数组。
请帮助她确定最长的连续算术子数组的长度。
输入格式
第一行包含整数 TTT,表示共有 TTT 组测试数据。
每组数据第一行包含整数 NNN。
第二行包含 NNN 个整数,其中第 iii 个整数表示 AiA_iAi。
输出格式
每组数据输出一个结果,每个结果占一行。
结果表示为 Case #x: y,其中 x 为组别编号(从 111 开始),y 表示最长的连续算术子数组的长度。
数据范围
1≤T≤100,1≤T≤100,1≤T≤100,
1≤Ai≤109,1≤A_i≤10^9,1≤Ai≤109,
对于每个测试点,满足 2≤N≤2×1052≤N≤2×10^52≤N≤2×105 的数据一定不超过 101010 组,其余数据则满足 2≤N≤20002≤N≤20002≤N≤2000。
输入样例:
4
7
10 7 4 6 8 10 11
4
9 7 5 3
9
5 5 4 5 5 5 4 5 6
10
5 4 3 2 1 2 3 4 5 6
输出样例:
Case #1: 4
Case #2: 4
Case #3: 3
Case #4: 6
样例解释
对于测试数据 1,最长的连续算术子数组为 [4,6,8,10]。
对于测试数据 2,最长的连续算术子数组就是数组本身。
对于测试数据 3,最长的连续算术子数组为 [4,5,6] 和 [5,5,5]。
对于测试数据 4,最长的连续算术子数组为 [1,2,3,4,5,6]。
#include<iostream>
using namespace std;
const int N = 200010;
int a[N];
int main(){
int t;
scanf("%d", &t);
int n;
for(int k = 1; k <= t; k++){
scanf("%d", &n);
for(int i = 0; i < n; i++)
scanf("%d", &a[i]);
int res = 2;
for(int i = 2; i < n; i++)
if(a[i] - a[i-1] == a[i-1] - a[i-2]){
int j = i + 1;
while(j < n && a[j] - a[j-1] == a[j-1] - a[j-2]) j++;
res = max(res, j - i + 2);
i = j - 1;
}
printf("Case #%d: %d\n", k, res);
}
return 0;
}
该博客讨论了一种算法问题,即找出一个整数数组中具有相同差值的最长连续子数组。通过遍历数组并检查相邻元素间的差值,可以找到满足条件的最长子数组。示例和代码展示了如何解决这个问题,并给出了不同测试用例的结果。
469

被折叠的 条评论
为什么被折叠?



