支持向量机

支持向量机

作者: l i t t l e − x u little-xu littlexu
时间: 2021 / 1 / 20 2021/1/20 2021/1/20

间隔与支持向量

最大间隔超平面

我们有样本训练集 { ( x 1 , y 1 ) , ( x 2 , y 2 ) , ⋯   , ( x i , y i ) } , y i ∈ { − 1 , + 1 } \{(x_1,y_1),(x_2,y_2),\cdots,(x_i,y_i)\},y_i \in \{-1,+1\} {(x1,y1),(x2,y2),,(xi,yi)},yi{1,+1},不妨我们用正例描述 + 1 +1 +1,负例来描述 − 1 -1 1,在高维度我们寻找一个平面将将正例和负例划分开来

在这里插入图片描述

从二维扩展到多维空间中时,将 D 1 D_1 D1 D 2 D_2 D2完全正确地划分开的 w x + b = 0 wx+b=0 wx+b=0就成了一个超平面。
那怎么去确定这样的鲁棒性平面呢?
正例有边界线,负例也有边界,将最外围的点连线,就变成一个凸集。也就是他的边界线
  • ##### 两类样本分别分割在该超平面的两侧

  • ##### 超平面到正例和反例的边界线距离之和最大

此处细品超平面到边界线距离:训练集 T T T中正例(负例)到超平面 ( w , b ) (w,b) (w,b)关于 T T T中所有样本点 ( x i , y i ) (x_i,y_i) (xi,yi)的几何间隔最小值

几何间隔

γ i = y i ( w x i + b ∥ w ∥ ) \begin{aligned} \gamma_i=y_i(\cfrac{wx_i+b}{\|w\|}) \end{aligned} γi=yi(wwxi+b)

疑惑:此处 y i y_i yi是来捣蛋的?
解疑:

{ w T x i + b ≥ + 1 ( 正 例 边 界 ) , y i = + 1 w T x i + b ≤ − 1 ( 负 例 边 界 ) , y i = − 1 \begin{aligned} \begin{cases} w^Tx_i+b \geq +1(正例边界) , \quad y_i=+1 \\ w^Tx_i+b \leq -1(负例边界) , \quad y_i=-1 \\ \end{cases} \end{aligned} {wTxi+b+1()yi=+1wTxi+b1()yi=1

这个又是是什么嘞?

在这里插入图片描述

w x + b = 1 wx+b=1 wx+b=1是我们正例边界切平面,我们将正例中任意一个样本 ( x 正 , y 正 ) (x_正,y_正) (x,y)带入 y = w x + b − 1 y=wx+b-1 y=wx+b1得到 y ≥ 0 y \geq 0 y0,即 w x + b − 1 ≥ 0 wx+b-1 \geq 0 wx+b10,负例也是如此
由小学知识可知,距离是没有负数的。当 y i y_i yi为正例时, γ i = ( w x i + b ∥ w ∥ ) \begin{aligned}\gamma_i=(\cfrac{wx_i+b}{\|w\|})\end{aligned} γi=(wwxi+b),当 y i y_i yi为反例时, γ i = − ( w x i + b ∥ w ∥ ) \begin{aligned}\gamma_i=-(\cfrac{wx_i+b}{\|w\|})\end{aligned} γi=(wwxi+b),所以我们这里用 y i y_i yi抵消 + 1 , − 1 +1,-1 +1,1造成的影响
范数科普
平面 w 1 x + w 2 y + b = 0 w_1x+w_2y+b=0 w1x+w2y+b=0,数据 ( x 0 , y 0 ) (x_0,y_0) (x0,y0)到平面距离

d = ∣ w 1 x 0 + w 2 y 0 + b ∣ w 1 2 + w 2 2 = ∣ w 1 x 0 + w 2 y 0 + b ∣ ∥ w ∥ \begin{aligned} d & =\dfrac{\lvert w_1x_0 + w_2y_0 + b \rvert}{\sqrt{w_1^2 + w_2^2}} \\ & = \dfrac{\lvert w_1x_0 + w_2y_0 + b \rvert}{\|w\|} \end{aligned} d=w12+w22 w1x0+w2y0+b=ww1x0+w2y0+b

目标规划

此处细品超平面到边界线距离:训练集 T T T中正例(负例)到超平面 ( w , b ) (w,b) (w,b)关于 T T T中所有样本点 ( x i , y i ) (x_i,y_i) (xi,yi)的几何间隔至少是 γ \gamma γ

m a x w , b γ 正 + γ 负 s . t . y i ( w x i + b ∥ x ∥ ) \begin{aligned} & \mathop{max}\limits_{w,b} \quad \gamma_正 + \gamma_负 \\ & s.t. \quad y_i(\dfrac{wx_i+b}{ \| x \| }) \end{aligned} w,bmaxγ+γs.t.yi(xwxi+b)

由解疑中的边界切线 w x + b = ± 1 wx+b= \pm 1 wx+b=±1转化成了

m a x w , b 1 ∥ w ∥ + 1 ∥ w ∥ = 2 ∥ w ∥ s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , ⋯   , m . \begin{aligned} & \mathop{max}\limits_{w,b} \quad \cfrac{1}{ \| w \|} +\cfrac{1}{ \| w \|}= \cfrac{2}{ \| w \|} \\ & s.t. \quad y_i(w^Tx_i+b) \geq 1, \quad i=1,2,\cdots,m. \end{aligned} w,bmaxw1+w1=w2s.t.yi(wTxi+b)1,i=1,2,,m.

由线性规划在约束条件 s . t . s.t. s.t.下让 w w w取得最小值,等价于

m i n w , b 1 2 ∥ w ∥ 2 s . t . y i ( w T x i + b ) ≥ 1 , i = 1 , 2 , ⋯   , m . \begin{aligned} & \mathop{min}\limits_{w,b} \quad \cfrac{1}{ 2}{ \| w \|}^2 \\ & s.t. \quad y_i(w^Tx_i+b) \geq 1, \quad i=1,2,\cdots,m. \end{aligned} w,bmin21w2s.t.yi(wTxi+b)1,i=1,2,,m.

对偶问题

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值