给定一棵包含 N 个节点的完全二叉树,树上每个节点都有一个权值,按从上到下、从左到右的顺序依次是 A1,A2,⋅⋅⋅AN,如下图所示:
现在小明要把相同深度的节点的权值加在一起,他想知道哪个深度的节点权值之和最大?
如果有多个深度的权值和同为最大,请你输出其中最小的深度。
注:根的深度是 1。
输入格式
第一行包含一个整数 N。
第二行包含 N 个整数 A1,A2,⋅⋅⋅AN。
输出格式
输出一个整数代表答案。
数据范围
1≤N≤105,
−105≤Ai≤105
输入样例:
7
1 6 5 4 3 2 1
输出样例:
2
难度:简单
时/空限制:1s / 64MB
总通过数:4888
总尝试数:17816
来源:第十届蓝桥杯省赛C++A/B组,第十届蓝桥杯省赛JAVAA组
/*
完全二叉树:除最后一层,其他层的结点的度都为2的二叉树
1.除了最后一层满度(即度为2)
2.每层个数为2^(d-1)
3.每一层的起点下标为1,2,4,8...即若第一层的起点为i,则,其他层的起点为上一层的i*2(叠乘)
思路:一维数组存权值;遍历每一层,用一个变量s记录每一层的和,更新最大值。
遍历每一层:用一个变量d表示层,i表示每一层的起点,j遍历第d层
伪代码: for(d=1,i=1;i<=n;d++,i*=2){ //d为层数,i为第d层的起点数,每次i变化为之前的两倍
s=0; //s为第d层的和
for(j=i;j<i+2^(d-1)&&j<=n;j++) //用j遍历第d层,从i开始到该层结束
更新max
}
运算符问题:2^(d-1)可以用1<<(d-1)表示;<<和>>优先级比+,-要低
max初始值问题:一般最大值的初始化要尽量小,可以赋值为-1e18
复杂度问题:该题数据范围为10^5,最差情况该层和为10^5*10^5=10^10,会爆int(2*10^9),因此和要用long long型
*/
#include"iostream"
#include"cstdio"
using namespace std;
typedef long long LL;
const int N=100010;
int a[N],n;
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]); //输入权值
LL maxs=-1e18; //maxs初始值注意一下
int depth=0; //记录和最大的层数
for(int i=1,d=1;i<=n;d++,i*=2){
LL s=0; //思考s为什么写在这个位置
for(int j=i;j<i+(1<<(d-1))&&j<=n;j++) //注意运算符优先级的问题
s+=a[j];
if(s>maxs){ //更新最大值及该层数 注意一下嵌套问题
maxs=s;
depth=d;
}
}
cout<<depth<<endl;
return 0;
}