题目描述:
思路:
//典型的动态规划题目:
// 1
// 1+1、2
// 1+1+1、1+2、2+1
// 1+1+1+1、1+1+2、1+2+1、2+1+1、2+2
// 跳n级台阶时有:f(n)种跳法。在所有的跳法种,青蛙的最后一步只有两种情况:跳上1级或2级台阶。
// 当为1级台阶:剩 n-1 个台阶,此情况共有f(n - 1)种跳法。
// 当为2级台阶:剩 n-2 个台阶,此情况共有f(n - 2)种跳法。
// f(n) 为以上两种情况之和,即f(n) = f(n - 1) + f(n - 2); 这个递推性值为斐波那契数列。
// => 本题可转换为求斐波那契数列第n项值。
// 唯一不同之处在于起始数字不同 :f(0) = 1,f(1) = 1,f(2) = 2
题解:
- 不省去列表空间,循环求余法:
class Solution {
//动态规划,不省去列表空间,循环求余法:
public int numWays(int n) {
if(n == 0 || n == 1) return 1;
int[] dp = new int[n+1];
dp[0] = 1;
dp[1] = 1;
for(int i = 2; i <= n; i++){
dp[i] = (dp[i-1] + dp[i-2]) % 1000000007;
}
return dp[n];
}
}
- 空间复杂度优化,省去列表空间:
public int numWays(int n) {
if(n == 0 || n == 1) return 1;
int a = 1,b = 1,c = 2;
for(int i = 3; i <= n; i++){
a = b;
b = c;
c = (a + b) % 1000000007;
}
return c;
}
分享:
人生是由很多偶然事件所组成的必然事件。
偶然事件就是你可能进入到某个行业,见到某一位老板,又遇到怎样的一位另一半,这都很偶然。
而为什么又说是必然事件呢?你是否努力?因为上天不会辜负一个努力的人,你只要一直努力下去,早晚一天你会发光。