这里提供一个解决方法,检查torch安装的版本,**torch版本+cu…**的是支持cuda的版本,安装此版本才能使用gpu跑模型(注:此版本的大小会比标准版的大,通常是几个G)。
如:
torch1.9.0+cu114 和 1.9.0 是PyTorch的两个不同版本,它们之间的主要区别在于CUDA(Compute Unified Device Architecture)支持的版本和相关的硬件兼容性。下面解释了这两个版本的区别:
PyTorch 1.9.0:
这是PyTorch的标准版本,通常不包含特定的CUDA版本。
你可以在没有GPU支持的系统上安装这个版本,并且它也可以与不同版本的CUDA兼容。
这个版本不包含任何CUDA特定的加速操作。如果你的系统没有GPU或者你不需要GPU加速,可以选择这个版本。
PyTorch 1.9.0+cu114:
这个版本是专门为CUDA 11.4版本优化的PyTorch版本。
它包含了针对CUDA 11.4的优化,以提高在兼容的GPU上的性能。
如果你的系统上安装了CUDA 11.4,并且你的GPU支持这个版本,那么使用这个PyTorch版本可以获得更好的性能。