1. 使用KNN进行电影类型预测:
给定训练样本集合如下:
求解:testData={“老友记”: [29, 10, 2, “?片”]}。
解题步骤:
1.计算一个新样本与数据集中所有数据的距离
2.按照距离大小进行递增排序
3.选取距离最小的k个样本
4.确定前k个样本所在类别出现的频率,并输出出现频率最高的类别
import numpy as np
def createDataset():
'''
创建训练集,特征值分别为搞笑镜头、拥抱镜头、打斗镜头的数量
'''
learning_dataset = {
"宝贝当家": [45, 2, 9, "喜剧片"],
"美人鱼": [21, 17, 5, "喜剧片"],
"澳门风云3": [54, 9, 11, "喜剧片"],
"功夫熊猫3": [39, 0, 31, "喜剧片"],