人工智能-作业3:例题程序复现 PyTorch版

本文详细对比了使用PyTorch实现的神经网络中,不同激活函数(Sigmoid、ReLU)、损失函数(MSE、交叉熵)、步长和初始权值对反向传播效果的影响,并介绍了其原理和编码实现,适合理解深度学习基础和优化过程。
摘要由CSDN通过智能技术生成

1.使用pytorch复现课上例题

代码:

# https://blog.csdn.net/qq_41033011/article/details/109325070
# https://github.com/Darwlr/Deep_learning/blob/master/06%20Pytorch%E5%AE%9E%E7%8E%B0%E5%8F%8D%E5%90%91%E4%BC%A0%E6%92%AD.ipynb
# torch.nn.Sigmoid(h_in)
 
import torch
 
x1, x2 = torch.Tensor([0.5]), torch.Tensor([0.3])
y1, y2 = torch.Tensor([0.23]), torch.Tensor([-0.07])
print("=====输入值:x1, x2;真实输出值:y1, y2=====")
print(x1, x2, y1, y2)
w1, w2, w3, w4, w5, w6, w7, w8 = torch.Tensor([0.2]), torch.Tensor([-0.4]), torch.Tensor([0.5]), torch.Tensor(
    [0.6]), torch.Tensor([0.1]), torch.Tensor([-0.5]), torch.Tensor([-0.3]), torch.Tensor([0.8])  # 权重初始值
w1.requires_grad = True
w2.requires_grad = True
w3.requires_grad = True
w4.requires_grad = True
w5.requires_grad = True
w6.requires_grad = True
w7.requires_grad = True
w8.requires_grad = True
 
 
def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a
 
 
def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)
 
    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)
 
    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)
 
    return out_o1, out_o2
 
 
def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss
 
 
def update_w(w1, w2, w3, w4, w5, w6, w7, w8):
    # 步长
    step = 1
    w1.data = w1.data - step * w1.grad.data
    w2.data = w2.data - step * w2.grad.data
    w3.data = w3.data - step * w3.grad.data
    w4.data = w4.data - step * w4.grad.data
    w5.data = w5.data - step * w5.grad.data
    w6.data = w6.data - step * w6.grad.data
    w7.data = w7.data - step * w7.grad.data
    w8.data = w8.data - step * w8.grad.data
    w1.grad.data.zero_()  # 注意:将w中所有梯度清零
    w2.grad.data.zero_()
    w3.grad.data.zero_()
    w4.grad.data.zero_()
    w5.grad.data.zero_()
    w6.grad.data.zero_()
    w7.grad.data.zero_()
    w8.grad.data.zero_()
    return w1, w2, w3, w4, w5, w6, w7, w8
 
 
if __name__ == "__main__":
 
    print("=====更新前的权值=====")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)
 
    for i in range(11):
        print("=====第" + str(i) + "轮=====")
        L = loss_fuction(x1, x2, y1, y2) # 前向传播,求 Loss,构建计算图
        L.backward()  # 自动求梯度,不需要人工编程实现。反向传播,求出计算图中所有梯度存入w中
        print("\tgrad W: ", round(w1.grad.item(), 2), round(w2.grad.item(), 2), round(w3.grad.item(), 2),
              round(w4.grad.item(), 2), round(w5.grad.item(), 2), round(w6.grad.item(), 2), round(w7.grad.item(), 2),
              round(w8.grad.item(), 2))
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(w1, w2, w3, w4, w5, w6, w7, w8)
 
    print("更新后的权值")
    print(w1.data, w2.data, w3.data, w4.data, w5.data, w6.data, w7.data, w8.data)

结果:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====1=====
正向计算:o1 ,o2
tensor([0.4685]) tensor([0.5072])
损失函数(均方误差): 0.19503259658813477
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====2=====
正向计算:o1 ,o2
tensor([0.4604]) tensor([0.4864])
损失函数(均方误差): 0.1813509315252304
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====3=====
正向计算:o1 ,o2
tensor([0.4526]) tensor([0.4664])
损失函数(均方误差): 0.16865134239196777
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.08 0.03 0.07
=====4=====
正向计算:o1 ,o2
tensor([0.4451]) tensor([0.4473])
损失函数(均方误差): 0.15690487623214722
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.07 0.03 0.06
=====5=====
正向计算:o1 ,o2
tensor([0.4378]) tensor([0.4290])
损失函数(均方误差): 0.14607082307338715
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====6=====
正向计算:o1 ,o2
tensor([0.4307]) tensor([0.4116])
损失函数(均方误差): 0.1361003816127777
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====7=====
正向计算:o1 ,o2
tensor([0.4239]) tensor([0.3951])
损失函数(均方误差): 0.1269397884607315
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====8=====
正向计算:o1 ,o2
tensor([0.4173]) tensor([0.3794])
损失函数(均方误差): 0.11853282898664474
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====9=====
正向计算:o1 ,o2
tensor([0.4109]) tensor([0.3647])
损失函数(均方误差): 0.11082295328378677
	grad W:  -0.02 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====10=====
正向计算:o1 ,o2
tensor([0.4047]) tensor([0.3507])
损失函数(均方误差): 0.10375461727380753
	grad W:  -0.02 -0.0 -0.01 -0.0 0.02 0.06 0.02 0.05
更新后的权值
tensor([0.3425]) tensor([-0.4540]) tensor([0.5855]) tensor([0.5676]) tensor([-0.2230]) tensor([-1.2686]) tensor([-0.5765]) tensor([0.1418])

Process finished with exit code 0

2.对比【作业3】和【作业2】的程序,观察两种方法结果是否相同?如果不同,哪个正确?

作业二结果:

=====输入值:x1, x2;真实输出值:y1, y2=====
0.5 0.3 0.23 -0.07
=====更新前的权值=====
0.2 -0.4 0.5 0.6 0.1 -0.5 -0.3 0.8
=====0=====
正向计算:o1 ,o2
0.47695 0.5287
损失函数:均方误差
0.20971
反向传播:误差传给每个权值
0.01458 0.01304 0.00875 0.00782 0.03463 0.08387 0.03049 0.07384
=====1=====
正向计算:o1 ,o2
0.43556 0.42626
损失函数:均方误差
0.14427
反向传播:误差传给每个权值
0.0117 0.01039 0.00702 0.00623 0.02779 0.06674 0.02446 0.05873
=====2=====
正向计算:o1 ,o2
0.40429 0.35169
损失函数:均方误差
0.1041
反向传播:误差传给每个权值
0.00926 0.00818 0.00556 0.00491 0.02267 0.05193 0.01994 0.04568
=====3=====
正向计算:o1 ,o2
0.38013 0.29988
损失函数:均方误差
0.07968
反向传播:误差传给每个权值
0.00749 0.00659 0.00449 0.00395 0.01883 0.04133 0.01656 0.03636
=====4=====
正向计算:o1 ,o2
0.36101 0.26298
损失函数:均方误差
0.06402
反向传播:误差传给每个权值
0.00621 0.00545 0.00373 0.00327 0.01589 0.03394 0.01398 0.02986
...
...
...
=====999=====
正向计算:o1 ,o2
0.23038 0.00954
损失函数:均方误差
0.00316
反向传播:误差传给每个权值
4e-05 3e-05 2e-05 2e-05 3e-05 0.00029 2e-05 0.00026
更新后的权值
-0.84 -1.3 -0.13 0.06 -1.55 -7.31 -1.75 -5.23

Process finished with exit code 0

对比发现,作业二与作业三程序结果不同,且作业三更接近正确结果。

3.【作业2】程序更新(保留【作业2中】的错误答案,留作对比。新程序到作业3)

import numpy as np
import matplotlib.pyplot as plt


def sigmoid(z):
    a = 1 / (1 + np.exp(-z))
    return a


def forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8):  # 正向传播
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)

    error = (1 / 2) * (out_o1 - y1) ** 2 + (1 / 2) * (out_o2 - y2) ** 2

    return out_o1, out_o2, out_h1, out_h2, error


def back_propagate(out_o1, out_o2, out_h1, out_h2):  # 反向传播
    d_o1 = out_o1 - y1
    d_o2 = out_o2 - y2

    d_w5 = d_o1 * out_o1 * (1 - out_o1) * out_h1
    d_w7 = d_o1 * out_o1 * (1 - out_o1) * out_h2
    d_w6 = d_o2 * out_o2 * (1 - out_o2) * out_h1
    d_w8 = d_o2 * out_o2 * (1 - out_o2) * out_h2

    d_w1 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x1
    d_w3 = (d_w5 + d_w6) * out_h1 * (1 - out_h1) * x2
    d_w2 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x1
    d_w4 = (d_w7 + d_w8) * out_h2 * (1 - out_h2) * x2

    return d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8


def update_w(step, w1, w2, w3, w4, w5, w6, w7, w8):  # 梯度下降,更新权值
    w1 = w1 - step * d_w1
    w2 = w2 - step * d_w2
    w3 = w3 - step * d_w3
    w4 = w4 - step * d_w4
    w5 = w5 - step * d_w5
    w6 = w6 - step * d_w6
    w7 = w7 - step * d_w7
    w8 = w8 - step * d_w8
    return w1, w2, w3, w4, w5, w6, w7, w8


if __name__ == "__main__":
    w1, w2, w3, w4, w5, w6, w7, w8 = 0.2, -0.4, 0.5, 0.6, 0.1, -0.5, -0.3, 0.8  # 可以给随机值,为配合PPT,给的指定值
    x1, x2 = 0.5, 0.3  # 输入值
    y1, y2 = 0.23, -0.07  # 正数可以准确收敛;负数不行。why? 因为用sigmoid输出,y1, y2 在 (0,1)范围内。
    N = 10  # 迭代次数
    step = 10  # 步长

    print("输入值:x1, x2;", x1, x2, "输出值:y1, y2:", y1, y2)
    eli = []
    lli = []
    for i in range(N):
        print("=====第" + str(i) + "轮=====")
        # 正向传播
        out_o1, out_o2, out_h1, out_h2, error = forward_propagate(x1, x2, y1, y2, w1, w2, w3, w4, w5, w6, w7, w8)
        print("正向传播:", round(out_o1, 5), round(out_o2, 5))
        print("损失函数:", round(error, 2))
        # 反向传播
        d_w1, d_w2, d_w3, d_w4, d_w5, d_w6, d_w7, d_w8 = back_propagate(out_o1, out_o2, out_h1, out_h2)
        # 梯度下降,更新权值
        w1, w2, w3, w4, w5, w6, w7, w8 = update_w(step, w1, w2, w3, w4, w5, w6, w7, w8)
        eli.append(i)
        lli.append(error)

    plt.plot(eli, lli,color='red')
    plt.ylabel('Loss')
    plt.xlabel('w')
    plt.show()

结果如下:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
输入值:x1, x2; 0.5 0.3 输出值:y1, y2: 0.23 -0.07
=====0=====
正向传播: 0.47695 0.5287
损失函数: 0.21
=====1=====
正向传播: 0.39688 0.3339
损失函数: 0.1
=====2=====
正向传播: 0.35292 0.24607
损失函数: 0.06
=====3=====
正向传播: 0.32545 0.20128
损失函数: 0.04
=====4=====
正向传播: 0.30671 0.17356
损失函数: 0.03
=====5=====
正向传播: 0.29314 0.15435
损失函数: 0.03
=====6=====
正向传播: 0.28291 0.14005
损失函数: 0.02
=====7=====
正向传播: 0.27495 0.12888
损失函数: 0.02
=====8=====
正向传播: 0.26861 0.11985
损失函数: 0.02
=====9=====
正向传播: 0.26348 0.11236
损失函数: 0.02
=====10=====
正向传播: 0.25925 0.10601
损失函数: 0.02

在这里插入图片描述

4.对比【作业2】与【作业3】的反向传播的实现方法。总结并陈述

作业二是用链式求导法则手动计算反向传播过程中各参数梯度,作业三是用PyTorch的Tensor这种数据结构,在前向传播中动态构建计算图自动求导,效率比链式求导高很多。

5.激活函数Sigmoid用PyTorch自带函数torch.sigmoid(),观察、总结并陈述

原函数:

def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

替换后函数:

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

结果:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====1=====
正向计算:o1 ,o2
tensor([0.4685]) tensor([0.5072])
损失函数(均方误差): 0.19503259658813477
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====2=====
正向计算:o1 ,o2
tensor([0.4604]) tensor([0.4864])
损失函数(均方误差): 0.1813509315252304
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====3=====
正向计算:o1 ,o2
tensor([0.4526]) tensor([0.4664])
损失函数(均方误差): 0.16865134239196777
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.08 0.03 0.07
=====4=====
正向计算:o1 ,o2
tensor([0.4451]) tensor([0.4473])
损失函数(均方误差): 0.15690487623214722
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.07 0.03 0.06
=====5=====
正向计算:o1 ,o2
tensor([0.4378]) tensor([0.4290])
损失函数(均方误差): 0.14607082307338715
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====6=====
正向计算:o1 ,o2
tensor([0.4307]) tensor([0.4116])
损失函数(均方误差): 0.1361003816127777
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====7=====
正向计算:o1 ,o2
tensor([0.4239]) tensor([0.3951])
损失函数(均方误差): 0.1269397884607315
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====8=====
正向计算:o1 ,o2
tensor([0.4173]) tensor([0.3794])
损失函数(均方误差): 0.11853284388780594
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====9=====
正向计算:o1 ,o2
tensor([0.4109]) tensor([0.3647])
损失函数(均方误差): 0.11082295328378677
	grad W:  -0.02 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====10=====
正向计算:o1 ,o2
tensor([0.4047]) tensor([0.3507])
损失函数(均方误差): 0.10375461727380753
	grad W:  -0.02 -0.0 -0.01 -0.0 0.02 0.06 0.02 0.05
更新后的权值
tensor([0.3425]) tensor([-0.4540]) tensor([0.5855]) tensor([0.5676]) tensor([-0.2230]) tensor([-1.2686]) tensor([-0.5765]) tensor([0.1418])

Process finished with exit code 0

6.激活函数Sigmoid改变为Relu,观察、总结并陈述

原函数:

def sigmoid(z):
    a = 1 / (1 + torch.exp(-z))
    return a


def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = sigmoid(in_h1)  # out_h1 = torch.sigmoid(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = sigmoid(in_h2)  # out_h2 = torch.sigmoid(in_h2)

    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = sigmoid(in_o1)  # out_o1 = torch.sigmoid(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = sigmoid(in_o2)  # out_o2 = torch.sigmoid(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

变换后函数:

def forward_propagate(x1, x2):
    in_h1 = w1 * x1 + w3 * x2
    out_h1 = torch.relu(in_h1)
    in_h2 = w2 * x1 + w4 * x2
    out_h2 = torch.relu(in_h2)


    in_o1 = w5 * out_h1 + w7 * out_h2
    out_o1 = torch.relu(in_o1)
    in_o2 = w6 * out_h1 + w8 * out_h2
    out_o2 = torch.relu(in_o2)

    print("正向计算:o1 ,o2")
    print(out_o1.data, out_o2.data)

    return out_o1, out_o2

结果:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.0250]) tensor([0.])
损失函数(均方误差): 0.023462500423192978
	grad W:  -0.01 0.0 -0.01 0.0 -0.05 0.0 -0.0 0.0
=====1=====
正向计算:o1 ,o2
tensor([0.0389]) tensor([0.])
损失函数(均方误差): 0.020715968683362007
	grad W:  -0.01 0.0 -0.01 0.0 -0.05 0.0 0.0 0.0
=====2=====
正向计算:o1 ,o2
tensor([0.0535]) tensor([0.])
损失函数(均方误差): 0.01803365722298622
	grad W:  -0.02 0.0 -0.01 0.0 -0.05 0.0 0.0 0.0
=====3=====
正向计算:o1 ,o2
tensor([0.0690]) tensor([0.])
损失函数(均方误差): 0.015410471707582474
	grad W:  -0.02 0.0 -0.01 0.0 -0.04 0.0 0.0 0.0
=====4=====
正向计算:o1 ,o2
tensor([0.0855]) tensor([0.])
损失函数(均方误差): 0.012893404811620712
	grad W:  -0.02 0.0 -0.01 0.0 -0.04 0.0 0.0 0.0
=====5=====
正向计算:o1 ,o2
tensor([0.1026]) tensor([0.])
损失函数(均方误差): 0.010560503229498863
	grad W:  -0.02 0.0 -0.01 0.0 -0.04 0.0 0.0 0.0
=====6=====
正向计算:o1 ,o2
tensor([0.1200]) tensor([0.])
损失函数(均方误差): 0.008496038615703583
	grad W:  -0.02 0.0 -0.01 0.0 -0.04 0.0 0.0 0.0
=====7=====
正向计算:o1 ,o2
tensor([0.1371]) tensor([0.])
损失函数(均方误差): 0.006765476893633604
	grad W:  -0.02 0.0 -0.01 0.0 -0.03 0.0 0.0 0.0
=====8=====
正向计算:o1 ,o2
tensor([0.1532]) tensor([0.])
损失函数(均方误差): 0.005397447384893894
	grad W:  -0.02 0.0 -0.01 0.0 -0.03 0.0 0.0 0.0
=====9=====
正向计算:o1 ,o2
tensor([0.1679]) tensor([0.])
损失函数(均方误差): 0.004378797020763159
	grad W:  -0.01 0.0 -0.01 0.0 -0.02 0.0 0.0 0.0
=====10=====
正向计算:o1 ,o2
tensor([0.1807]) tensor([0.])
损失函数(均方误差): 0.0036630069371312857
	grad W:  -0.01 0.0 -0.01 0.0 -0.02 0.0 0.0 0.0
更新后的权值
tensor([0.3877]) tensor([-0.4000]) tensor([0.6126]) tensor([0.6000]) tensor([0.5074]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])

Process finished with exit code 0

7.损失函数MSE用PyTorch自带函数 t.nn.MSELoss()替代,观察、总结并陈述。

原函数:

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss

替代后函数:

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss_f = torch.nn.MSELoss()
    y_pred = torch.cat((y1_pred, y2_pred), dim=0)
    y = torch.cat((y1, y2), dim=0)
    loss = loss_f(y_pred,y)
    print("损失函数(均方误差):", loss.item())
    return loss

8.损失函数MSE改变为交叉熵,观察、总结并陈述

原函数:

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss = (1 / 2) * (y1_pred - y1) ** 2 + (1 / 2) * (y2_pred - y2) ** 2  # 考虑 : t.nn.MSELoss()
    print("损失函数(均方误差):", loss.item())
    return loss

替代后函数:

def loss_fuction(x1, x2, y1, y2):  # 损失函数
    y1_pred, y2_pred = forward_propagate(x1, x2)  # 前向传播
    loss_f = torch.nn.CrossEntropyLoss
    y_pred = torch.cat((y1_pred, y2_pred), dim=0)
    y = torch.cat((y1, y2), dim=0)
    loss = loss_f(y_pred,y)
    print("损失函数(均方误差):", loss.item())
    return loss

9.改变步长,训练次数,观察、总结并陈述

1.步长为1,迭代1次:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
更新后的权值
tensor([0.2084]) tensor([-0.4126]) tensor([0.5051]) tensor([0.5924]) tensor([0.0654]) tensor([-0.5839]) tensor([-0.3305]) tensor([0.7262])

Process finished with exit code 0

2.步长为1,迭代10次:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====1=====
正向计算:o1 ,o2
tensor([0.4685]) tensor([0.5072])
损失函数(均方误差): 0.19503259658813477
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====2=====
正向计算:o1 ,o2
tensor([0.4604]) tensor([0.4864])
损失函数(均方误差): 0.1813509315252304
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====3=====
正向计算:o1 ,o2
tensor([0.4526]) tensor([0.4664])
损失函数(均方误差): 0.16865134239196777
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.08 0.03 0.07
=====4=====
正向计算:o1 ,o2
tensor([0.4451]) tensor([0.4473])
损失函数(均方误差): 0.15690487623214722
	grad W:  -0.01 0.01 -0.01 0.0 0.03 0.07 0.03 0.06
=====5=====
正向计算:o1 ,o2
tensor([0.4378]) tensor([0.4290])
损失函数(均方误差): 0.14607082307338715
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====6=====
正向计算:o1 ,o2
tensor([0.4307]) tensor([0.4116])
损失函数(均方误差): 0.1361003816127777
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.07 0.02 0.06
=====7=====
正向计算:o1 ,o2
tensor([0.4239]) tensor([0.3951])
损失函数(均方误差): 0.1269397884607315
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====8=====
正向计算:o1 ,o2
tensor([0.4173]) tensor([0.3794])
损失函数(均方误差): 0.11853282898664474
	grad W:  -0.01 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
=====9=====
正向计算:o1 ,o2
tensor([0.4109]) tensor([0.3647])
损失函数(均方误差): 0.11082295328378677
	grad W:  -0.02 0.0 -0.01 0.0 0.03 0.06 0.02 0.05
更新后的权值
tensor([0.3273]) tensor([-0.4547]) tensor([0.5764]) tensor([0.5672]) tensor([-0.1985]) tensor([-1.2127]) tensor([-0.5561]) tensor([0.1883])

Process finished with exit code 0

步长为10,迭代1次:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
更新后的权值
tensor([0.2842]) tensor([-0.5261]) tensor([0.5505]) tensor([0.5244]) tensor([-0.2463]) tensor([-1.3387]) tensor([-0.6049]) tensor([0.0616])

Process finished with exit code 0

步长为10,迭代10次:

D:\python_pycharm\venv\Scripts\python.exe D:/python_pycharm/SVM-blanks.py
=====输入值:x1, x2;真实输出值:y1, y2=====
tensor([0.5000]) tensor([0.3000]) tensor([0.2300]) tensor([-0.0700])
=====更新前的权值=====
tensor([0.2000]) tensor([-0.4000]) tensor([0.5000]) tensor([0.6000]) tensor([0.1000]) tensor([-0.5000]) tensor([-0.3000]) tensor([0.8000])
=====0=====
正向计算:o1 ,o2
tensor([0.4769]) tensor([0.5287])
损失函数(均方误差): 0.2097097933292389
	grad W:  -0.01 0.01 -0.01 0.01 0.03 0.08 0.03 0.07
=====1=====
正向计算:o1 ,o2
tensor([0.3945]) tensor([0.3225])
损失函数(均方误差): 0.0905664712190628
	grad W:  -0.02 -0.0 -0.01 -0.0 0.02 0.05 0.02 0.04
=====2=====
正向计算:o1 ,o2
tensor([0.3403]) tensor([0.2198])
损失函数(均方误差): 0.04808921366930008
	grad W:  -0.01 -0.0 -0.01 -0.0 0.01 0.03 0.01 0.02
=====3=====
正向计算:o1 ,o2
tensor([0.3042]) tensor([0.1671])
损失函数(均方误差): 0.03085227683186531
	grad W:  -0.01 -0.0 -0.01 -0.0 0.01 0.02 0.01 0.02
=====4=====
正向计算:o1 ,o2
tensor([0.2804]) tensor([0.1357])
损失函数(均方误差): 0.022416697815060616
	grad W:  -0.01 -0.0 -0.0 -0.0 0.01 0.02 0.01 0.01
=====5=====
正向计算:o1 ,o2
tensor([0.2643]) tensor([0.1149])
损失函数(均方误差): 0.01768375188112259
	grad W:  -0.01 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01
=====6=====
正向计算:o1 ,o2
tensor([0.2533]) tensor([0.1001])
损失函数(均方误差): 0.014743898995220661
	grad W:  -0.0 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01
=====7=====
正向计算:o1 ,o2
tensor([0.2456]) tensor([0.0890])
损失函数(均方误差): 0.012769920751452446
	grad W:  -0.0 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01
=====8=====
正向计算:o1 ,o2
tensor([0.2402]) tensor([0.0804])
损失函数(均方误差): 0.011361523531377316
	grad W:  -0.0 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01
=====9=====
正向计算:o1 ,o2
tensor([0.2363]) tensor([0.0734])
损失函数(均方误差): 0.010307400487363338
	grad W:  -0.0 -0.0 -0.0 -0.0 0.0 0.01 0.0 0.01
更新后的权值
tensor([0.9458]) tensor([-0.2734]) tensor([0.9475]) tensor([0.6759]) tensor([-0.8954]) tensor([-2.9388]) tensor([-1.1210]) tensor([-1.2041])

Process finished with exit code 0

对比可知,步长越长,训练次数越多,则损失函数越小。

10.权值w1-w8初始值换为随机数,对比【作业2】指定权值结果,观察、总结并陈述

权值无论如何初始化,不会影响最终结果。

11.总结反向传播原理和编码实现

反向传播算法是目前用来训练人工神经网络的最常用且最有效的算法,其主要思想是:将训练集数据输入到算法的输入层,经过隐藏层,最后达到输出层并输出结果,这是算法的前向传播过程;由于算法的输出结果与实际结果有误差,则先计算估计值与实际值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;在反向传播的过程中,根据误差调整各种参数的值;不断迭代上述过程,直至收敛。

12.参考资料:

【2021-2022 春学期】人工智能-作业3:例题程序复现 PyTorch版
一文读懂反向传播算法原理
【pytorch函数笔记(二)】torch.nn.Sigmoid()
Pytorch的22个激活函数

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值