bibliometrix包的使用(个人备忘记录)

为何要用bibliometrix

最初参考的文献“基于CiteSpace文献计量的湖泊抗生素抗性基因研究进展与热点分析”跟着使用CiteSpace,但是在使用途中发现citespace操作不太顺手,可能是分析操作有误,经常性的遇到卡死。虽然有这些问题但是也不影响使用,最近又重新拿出来使用,但是遇到网络问题,奈何更新也没办法解决在这里插入图片描述
于是就换了mac操作系统使用,但是mac系统下对文件读取有问题也依旧分析不了(一直没反应)
在这里插入图片描述

于是这就转向了bibliometrix的使用。

bibliometrix

先下载R studio;
通过R studio 输入命令
install.packages(‘bibliometrix’, dependencies=TRUE)

借助R的library调用shiny
library(bibliometrix)
biblioshiny()

在这里插入图片描述
回车后进入biblioshiny包,这个包是通过R调用利用网站的形式交互使用,个人认为挺方便

data的导入

对文献数据可视化分析基本上离不开data的导入
进入到软件后选择**import raw files **导入本地下载的文献数据,如CNKI;web of science;这里个人用web of science作为例子;CNKI提供的交互数据有点少,作者地区分析不了
在这里插入图片描述

导入后点击 start(结果如下)

在这里插入图片描述

点击filter 选择自己想要分析的时间段落(例如:2017-2022)

在这里插入图片描述

Overview 可以大体的得到数据的-基本信息-每年的发文数量-年均引用量-发文的一个领域进化图

main information

分析参数可以根据自己想要的改变,如我的左边是国家,中间是关键词的,右边也是关键词(这两个区别是定义词汇的语法不一样)创建了引用参考文献的国家、关键字和出版年份的三场图(桑基图),以描绘每个国家的研究主题的比例以及他们引用的论文的新近程度
分析的参数可以改变

文章来源分

在这里插入图片描述

作者的来源

在这里插入图片描述

文档的数据分析

antibiotic-resistance** <- **antibiotic-resistance;resistance;antibiotic-resistance genes;
在这里插入图片描述

概念结构图的析因分析

在这里插入图片描述

bibliometrix功能很强大略偏向于数据分析且支持数据的导出,但是依旧感觉没有citespace可视化程度高

### 使用 `bibliometrix` R 进行文献计量分析 为了有效地利用 `bibliometrix` 进行文献计量分析,需遵循一系列操作流程来确保数据处理和可视化的效果最佳。 #### 准备工作环境 在开始之前,确认已安装并加载必要的软件工具。这括但不限于R及其集成开发环境RStudio[^2]。对于 `bibliometrix` 而言,在R环境中执行如下命令完成其安装: ```r install.packages("bibliometrix") library(bibliometrix) ``` #### 启动交互界面 通过调用函数 `biblioshiny()` 可启动图形化用户界面,简化数据分析过程中的复杂度,使得即使不具备深厚编程背景的研究者也能轻松上手[^1]。 #### 数据导入与预处理 当准备就绪后,应从Web of Science等数据库获取所需研究资料,并注意仅选用核心合集内的条目以减少误差风险。随后按照提示将这些记录引入到 `bibliometrix` 中做进一步加工处理。 #### 执行具体分析任务 依据个人需求选取合适的模块开展诸如共词网络构建、作者合作模式探索或是趋势预测等工作。每项功能背后都有详尽的帮助文档可供查阅(`?function_name`)以便深入了解参数设置细节以及预期产出形式。 #### 结果解释与报告撰写 最后一步是对所得图表及统计数据做出合理解读,并据此编写研究报告或论文章节。务必保持结论严谨性和科学性的同时也要注重表达清晰流畅易于理解。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值