2008. 出租车的最大盈利(动态规划)

文章介绍了一种算法Solution,用于解决出租车调度问题,通过对乘客按照结束时间排序,使用动态规划和二分查找计算在满足每个乘客需求时的最大收益。方法涉及比较当前乘客与之前乘客的收益,以及考虑接或不接的决策过程。
摘要由CSDN通过智能技术生成

在这里插入图片描述

  1. 按照 end 对每一个乘客进行排序
  2. 对于每一个乘客,如果接他就要寻找之前小于 start 的 end 中最大的那个来计算接他的收益,而不接的话就是上一个乘客的收益,取最大值即可
class Solution:
    def maxTaxiEarnings(self, n: int, rides: List[List[int]]) -> int:
        rides.sort(key=lambda r: r[1])
        m = len(rides)
        dp = [0] * (m + 1)
        for i in range(m):
            j = bisect_right(rides, rides[i][0], hi=i, key=lambda r:r[1])
            dp[i + 1] = max(dp[i], dp[j] + rides[i][1] - rides[i][0] + rides[i][2])
        return dp[m]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

eyvr

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值