目录
1.实验题目
1.【功能1】按先序次序建立一棵二叉树,以‘#’表示空。
2.【功能2】中序遍历二叉树,输出遍历序列。
3.【功能3】后序遍历二叉树,输出遍历序列。
4.【功能4】求出二叉树的深度并输出。
5.【功能5】求出二叉树的叶子数目并输出。
6.【功能6】以栈为辅助存储结构实现二叉树的先序非递归算法,输出二叉树的先序非递归遍历序列。
7.【功能7】以队列为辅助存储结构实现二叉树的层次遍历算法,输出二叉树的层次遍历序列。
8.【功能8】以栈为辅助存储结构实现二叉树的中序非递归算法,输出二叉树的中序非递归遍历序列。
2.实验要求
1、二叉树以二叉链表为存储结构。
2、主程序测试数据
(1)输入以下字符串,先序建立二叉树:ABC##DE#G##F###
(2)输出中序遍历序列应为:CBEGDFA
(3)输出后序遍历序列应为:CGEFDBA
(4)输出二叉树的深度应为:5
(5)输出二叉树的叶子数目应为:3
(6)输出二叉树的先序非递归遍历序列应为:ABCDEGF
(7)输出二叉树的层次遍历序列应为:ABCDEFG
(8)输出二叉树的中序非递归遍历序列应为:CBEGDFA
2、可以在教材定义的基础上,增加你的算法为成员函数。
3.算法思路
1.按先序次序建立一棵二叉树,以‘#’表示空
利用递归的办法。
首先建立一个根结点。
函数开始时,先检测数据。若数据为#号,则使其左子树和右子树为空。若该数据为正常的字符,则生成左结点和右结点。
输入下一个数据,并以该数据递归地生成左子树。在左子树构建完毕后再输入数据,以该数据递归地生成右子树。至此,以先序次序建立的二叉树完成了。
这样的二叉树有这样几种结点:根结点:可以直接被getroot访问。无效的结点:数据域为#,指针域为空。数据结点:数据域记录了真实数据。但其指针域不为空,可能指向另一个数据结点,也可能指向无效的结点。
4.求二叉树的深度
利用递归的办法。
求子二叉树的深度。在双亲结点上,取最深的子二叉树的深度值,并+1,可得以该结点构建的子二叉树的深度。在叶结点上,二叉树深度值为1.
5.求出二叉树的叶子数目
定义一个属性记录二叉树的叶子数目。利用递归先序遍历的办法。
正常的先序遍历中我们需要访问结点并输出数值。但是,在求叶子结点的过程中,我们只需判断该结点是否为叶子结点。若该结点的左右结点的数据域均为#,则说明该结点就是叶子结点。
6.二叉树的非递归先序遍历
利用栈作为辅助存储结构,实现二叉树的非递归先序遍历。
定义一个栈,并将根结点入栈。定义一个指针。当栈非空且指针指向不为空时,进行循环:先不断访问左结点,并将每个访问到的结点入栈,直到访问到空结点。此时,若栈非空,取栈顶并访问其右结点。将该过程循环,就可以实现二叉树的非递归先序遍历。
8.二叉树的非递归中序遍历
利用栈作为辅助存储结构,实现二叉树的非递归中序遍历。
定义一个栈,并将根结点入栈。定义一个指针。当栈非空且指针指向不为空时,进行循环:先不断访问左结点,并将每个访问到的结点入栈,直到访问到空结点。此时,若找到空结点,将该结点出栈。取栈顶元素,访问其右结点。
3.功能演示
4.总结
附录:源代码
bintree.h
#pragma once
#include"bintreenode.h"
#include"stack.h"
#include"queue.h"
#include<iostream>
#include<Windows.h>
using namespace std;
template<class elemtype>
class bintree
{
private:
bintreenode<elemtype>* root;
mutable int leafnum;
mutable int height;
public:
int getleafnum() {
return leafnum;
}
bintreenode<elemtype>* getroot() {
return this->root;
}
bintree() {
root = new bintreenode<elemtype>();
leafnum = 0;
height = 0;
}
void generatebintree(elemtype ch,bintreenode<elemtype> *n) {
n->data = ch;
if (ch == '#') {
n->leftchild = NULL;
n->rightchild = NULL;
return;
}//数据域为#,则没有孩子
n->leftchild = new bintreenode<elemtype>(NULL, NULL, NULL);//数据域不为#,则正常构建孩子结点
n->rightchild = new bintreenode<elemtype>(NULL, NULL, NULL);//构建孩子结点
elemtype newch;
cin >> newch;
generatebintree(newch, n->leftchild);//先根据数据构建左子树
cin >> newch;
generatebintree(newch, n->rightchild);//再根据数据构建右子树
return;
}
void inorder(bintreenode<elemtype>* r) const {
if (r != NULL) {
inorder(r->leftchild);
if(r->data!='#')
cout << r->data;
inorder(r->rightchild);
}
return;
}
void postorder(bintreenode<elemtype>* r) const {
if (r != NULL) {
postorder(r->leftchild);
postorder(r->rightchild);
if(r->data!='#')
cout << r->data;
}
return;
}
~bintree() {
deletetree(root);//析构函数
}
void deletetree(bintreenode<elemtype>* r) {
if (r != NULL) {
deletetree(r->leftchild);
deletetree(r->rightchild);
delete r;//后序遍历的办法delete树
}
return;
}
void countleaf(bintreenode<elemtype>* r) const {
if (r->data == '#')
return;
if (r->leftchild->data == '#' && r->rightchild->data == '#') {
leafnum++;//如果左右结点都是#,则说明这个结点就是叶结点
return;
}
if (r != NULL) {
countleaf(r->leftchild);
countleaf(r->rightchild);//不是叶节点,则递归的计算
}
}
int countheight(bintreenode<elemtype>* r) const {
if (r->data == '#' )
return 0;//空结点不算深度
else
return max(countheight(r->leftchild), countheight(r->rightchild)) + 1;//选最深的子树,深度+1
}
void stackpreorder() const {
stack<bintreenode<elemtype>* > nodestack(100);
bintreenode<elemtype>* p=root;
while (!nodestack.isempty() || p != NULL) {//当栈非空,p不指向空结点时,继续循环
while (p != NULL) {
if (p->data != '#')
cout << p->data;
nodestack.push(p);//将其入栈
p = p->leftchild;//找到最左的结点
}
if (!nodestack.isempty()) {
p = nodestack.gettop();//取栈顶,访问栈顶的右子树
nodestack.pop(p);
p = p->rightchild;
}
}
}
void levelorder() const {//层次遍历
queue<bintreenode<elemtype>*> nodequeue;
bintreenode<elemtype>* p;
if (root != NULL)
nodequeue.enqueue(root);
while (!nodequeue.isempty()) {//当队列非空时,继续运行
nodequeue.delqueue(p);//将队头出队
if (p->data != '#')
cout << p->data;
if (p->leftchild != NULL)
nodequeue.enqueue(p->leftchild);//将p左结点入队
if (p->rightchild != NULL)
nodequeue.enqueue(p->rightchild);//将p右结点入队
}
}
void stackinorder()const {//非递归中序遍历
stack<bintreenode<elemtype>*> nodestack;
bintreenode<elemtype>* p=root;
while (!nodestack.isempty()||p->data!='#') {
if (p->data != '#') {
nodestack.push(p);
p = p->leftchild;//找到最左结点,不断将访问到的结点入栈
}
else {
nodestack.pop(p);//栈顶出栈,访问右子树
if (p->data != '#')
cout << p->data;
p = p->rightchild;
}
}
}
};
bintreenode.h
#pragma once
#include<Windows.h>
template<class elemtype>
struct bintreenode
{
public:
elemtype data;
bintreenode<elemtype>* leftchild;
bintreenode<elemtype>* rightchild;
bintreenode() {
leftchild = NULL;
rightchild = NULL;
data = NULL;
}
bintreenode(const elemtype& d, bintreenode<elemtype>* l = NULL, bintreenode<elemtype>* r = NULL) {
data = d;
leftchild = l;
rightchild = r;
}
};
queue.h
#pragma once
#define status int
#define SUCCESS 1
#define ERROR 0
#include<Windows.h>
template <class elemtype>
class queue
{
protected:
int front, rear;
int maxsize;
elemtype* elems;
public:
queue(int size=100) {
maxsize = size;
if (elems != NULL) delete[]elems;
elems = new elemtype[maxsize];
rear = front = 0;
}
~queue() {
delete[]elems;
}
status enqueue(const elemtype& e) {
if ((rear + 1) % maxsize == front)
return ERROR;
else {
elems[rear]= e;
rear = (rear + 1) % maxsize;
return SUCCESS;
}
}
status delqueue(elemtype& e) {
if (!isempty()) {
e = elems[front];
front = (front + 1) % maxsize;
return SUCCESS;
}
else
return 0;
}
bool isempty() {
return rear == front;
}
};
stack.h
#pragma once
#define status int
#define ERROR 0
#define SUCCESS 1
#include<Windows.h>
template <typename elemtype>
class stack
{
private:
int top;
int maxsize;
elemtype* elems;
public:
stack(int size = 100) {
top = -1;
maxsize = size;
elems = new elemtype[maxsize];
}
~stack(){
delete []elems;
}
status push(const elemtype e){
if (top == maxsize)
return ERROR;
else
elems[++top] = e;
return SUCCESS;
}
status pop(elemtype &e){
if (top == -1)
return ERROR;
else
e = elems[top--];
return SUCCESS;
}
elemtype gettop() {
if (isempty())
return NULL;
else
return elems[top];
}
bool isempty(){
return (top == -1);
}
};
main.cpp
#include<iostream>
#include"bintree.h"
#include"bintreenode.h"
using namespace std;
int main() {
bintree<char> tree;
// tree.root = new bintreenode<char>();
char ch;
cout << "请输入你的树:";
cin >> ch;
tree.generatebintree(ch, tree.getroot());
cout << "中序遍历:";
tree.inorder(tree.getroot());
cout << endl;
cout << "后序遍历:";
tree.postorder(tree.getroot());
tree.countleaf(tree.getroot());
cout << endl;
cout << "叶结点数目"<<tree.getleafnum()<<endl;
cout << "二叉树深度:" << tree.countheight(tree.getroot())<< endl;
cout << "非递归先序遍历";
tree.stackpreorder();
cout << endl;
cout << "非递归层次遍历:";
tree.levelorder();
cout << endl;
cout << "非递归中序遍历";
tree.stackinorder();
cout << endl;
cout << "运行结束";
}