光学
干涉与偏振
上下光程差
δ
=
a
sin
θ
=
N
λ
2
\delta=a\sin\theta=N\frac\lambda 2
δ=asinθ=N2λ,其中
a
a
a为缝宽,
N
N
N为半波带数
a
sin
θ
=
{
0
中央明纹
±
(
2
k
+
1
)
λ
2
其他明纹
(
2
k
)
λ
2
暗纹
a\sin\theta=\begin{cases}0&中央明纹\\\pm(2k+1)\frac\lambda 2&其他明纹\\(2k)\frac\lambda 2&暗纹\end{cases}
asinθ=⎩
⎨
⎧0±(2k+1)2λ(2k)2λ中央明纹其他明纹暗纹
(
k
=
1
,
2
,
3
,
.
.
.
)
(k=1,2,3,...)
(k=1,2,3,...)
中央明纹线宽度
Δ
x
0
=
2
f
λ
a
\Delta x_0=2f\frac \lambda a
Δx0=2faλ,半角宽度
θ
=
arcsin
λ
a
\theta=\arcsin \frac\lambda a
θ=arcsinaλ
第一级明纹线宽度
Δ
x
=
f
λ
a
\Delta x=f\frac\lambda a
Δx=faλ
明纹中心位置
x
=
±
2
k
+
1
2
f
λ
a
x=\pm\frac{2k+1}{2}\frac{f\lambda}{a}
x=±22k+1afλ
自然光偏振:
I
1
=
1
2
I
0
,
I
2
=
I
1
cos
2
α
I_1=\frac 12I_0,I_2=I_1\cos^2\alpha
I1=21I0,I2=I1cos2α
圆孔衍射
d
d
d为圆孔直径
衍射角
sin
θ
1
=
1.22
λ
d
\sin\theta_1=1.22\frac \lambda d
sinθ1=1.22dλ
第一级暗纹半径(艾里斑)
R
=
1.22
λ
d
f
R=1.22\frac \lambda df
R=1.22dλf,
θ
=
1.22
λ
d
\theta=1.22\frac\lambda d
θ=1.22dλ
最小分辨角
θ
R
=
θ
1
=
1.22
λ
d
\theta_R=\theta_1=1.22\frac\lambda d
θR=θ1=1.22dλ,
R
=
1
θ
R
=
1
1.22
d
λ
R=\frac 1{\theta_R}=\frac 1{1.22}\frac{d}{\lambda}
R=θR1=1.221λd
θ
=
d
L
=
1.22
λ
D
\theta=\frac dL=\frac{1.22\lambda}{D}
θ=Ld=D1.22λ,其中
d
d
d为要分辨的距离,
L
L
L为总距离,
λ
\lambda
λ为波长,
D
D
D为一起直径
光栅衍射
d
=
a
+
b
d=a+b
d=a+b(
a
a
a为透光宽度,
b
b
b为不透光宽度)
相邻光束光程差
δ
=
B
C
‾
=
d
sin
θ
\delta=\overline {BC}=d\sin\theta
δ=BC=dsinθ
光栅方程
k
λ
=
d
sin
θ
(
k
=
0
,
±
1
,
±
2
,
.
.
.
)
k\lambda=d\sin\theta(k=0,\pm1,\pm2,...)
kλ=dsinθ(k=0,±1,±2,...)
暗纹位置
a
sin
θ
=
k
λ
a\sin\theta=k\lambda
asinθ=kλ
N
d
sin
θ
=
k
λ
Nd\sin\theta=k\lambda
Ndsinθ=kλ(整个光栅当做大单缝,
K
=
±
N
,
±
2
N
,
±
3
N
K=\pm N,\pm 2N,\pm 3N
K=±N,±2N,±3N除外)
相邻主明纹有
N
−
1
N-1
N−1条暗纹,
N
−
2
N-2
N−2条次明纹
主极大:
d
sin
θ
=
k
λ
d\sin\theta=k\lambda
dsinθ=kλ
缺级:
k
=
a
+
b
a
k
′
′
(
k
′
′
=
±
1
,
±
2
,
.
.
.
,
)
k=\frac{a+b}{a}k''(k''=\pm 1,\pm 2,...,)
k=aa+bk′′(k′′=±1,±2,...,)
折射
垂直时,反射成完全偏振
sin
i
B
sin
r
=
n
2
n
1
\frac{\sin i_B}{\sin r}=\frac{n_2}{n_1}
sinrsiniB=n1n2
i
B
+
r
=
π
2
i_B+r=\frac\pi 2
iB+r=2π
tan
i
B
=
n
2
n
1
\tan i_B=\frac{n_2}{n_1}
taniB=n1n2
sin
r
=
sin
(
π
2
−
i
B
)
=
cos
i
B
\sin r=\sin(\frac\pi 2-i_B)=\cos i_B
sinr=sin(2π−iB)=cosiB
热学
p
V
=
m
M
R
T
=
n
k
T
=
N
N
A
R
V
T
pV=\frac mMRT=nkT=\frac{N}{N_A}\frac RV T
pV=MmRT=nkT=NANVRT
n
=
N
V
n=\frac NV
n=VN(分子数量密度)
k
=
R
N
A
k=\frac R{N_A}
k=NAR
速率分布函数
f
(
v
)
=
d
N
n
d
V
f(v)=\frac{dN}{ndV}
f(v)=ndVdN,
N
=
∫
d
N
=
N
f
(
v
)
d
v
N=\int dN=Nf(v)dv
N=∫dN=Nf(v)dv
∫
f
(
v
)
d
v
=
1
\int f(v)dv=1
∫f(v)dv=1,
v
ˉ
=
∫
v
f
(
v
)
d
v
\bar v=\int_v f(v)dv
vˉ=∫vf(v)dv
分子速率
v
ˉ
x
2
=
v
ˉ
y
2
=
v
ˉ
z
2
=
1
3
v
⃗
2
ˉ
\bar v_x^2=\bar v_y^2=\bar v_z^2=\frac 13\bar {\vec v^2}
vˉx2=vˉy2=vˉz2=31v2ˉ
分子平均动能
ϵ
k
t
ˉ
=
1
2
m
0
v
ˉ
2
\bar {\epsilon_{kt}}=\frac 12m_0\bar v^2
ϵktˉ=21m0vˉ2
压强
=
2
3
n
ϵ
ˉ
k
t
=
n
m
0
1
3
v
ˉ
2
=\frac 23n\bar\epsilon_{kt}=nm_0\frac 13\bar v^2
=32nϵˉkt=nm031vˉ2
理想气体物态方程
p
=
n
k
T
p=nkT
p=nkT
气体分子平均平动动能
ϵ
ˉ
k
=
2
3
k
T
=
1
2
m
0
v
ˉ
2
,
T
=
2
ϵ
ˉ
k
t
3
k
\bar\epsilon_k=\frac 23kT=\frac 12m_0\bar v^2,T=\frac{2\bar \epsilon_{kt}}{3k}
ϵˉk=32kT=21m0vˉ2,T=3k2ϵˉkt
方均根速率
v
ˉ
2
=
3
R
T
M
\sqrt{\bar v^2}=\sqrt{\frac{3RT}{M}}
vˉ2=M3RT
分子平均总动能
ϵ
ˉ
=
i
2
k
T
\bar\epsilon=\frac i2kT
ϵˉ=2ikT
内能
E
=
m
M
i
2
R
T
=
N
i
2
k
T
E=\frac mM\frac i2RT=N\frac i2kT
E=Mm2iRT=N2ikT
最概然速率
v
p
=
2
R
T
M
v_p=\sqrt{\frac {2RT}M}
vp=M2RT
平均速率
v
ˉ
=
8
R
T
π
M
\bar v=\sqrt{\frac {8RT}{\pi M}}
vˉ=πM8RT
v
p
<
v
ˉ
<
v
ˉ
2
v_p<\bar v<\sqrt{\bar v^2}
vp<vˉ<vˉ2
平均碰撞速率
z
ˉ
=
2
π
d
2
v
ˉ
n
\bar z=\sqrt 2\pi d^2\bar vn
zˉ=2πd2vˉn
自由程
λ
ˉ
=
v
ˉ
z
=
1
2
π
d
2
n
\bar \lambda=\frac{\bar v}z=\frac 1{\sqrt 2\pi d^2n}
λˉ=zvˉ=2πd2n1
气体做功
A
=
∫
V
1
V
2
p
d
V
A=\int_{V_1}^{V_2}pdV
A=∫V1V2pdV
膨胀时对外做正功,收缩时对外做负功
内能增量
E
=
m
M
i
2
R
(
T
2
−
T
1
)
E=\frac mM\frac i2R(T_2-T_1)
E=Mm2iR(T2−T1)
Q
=
Δ
E
+
A
Q=\Delta E+A
Q=ΔE+A(系统吸热等于系统内能增量与对外做功之和,热力学第一定律)
热机效率
η
=
A
Q
1
=
1
−
Q
2
Q
1
\eta=\frac AQ_1=1-\frac {Q_2}{Q_1}
η=QA1=1−Q1Q2
制冷系数
w
=
Q
2
A
=
Q
2
Q
1
−
Q
2
w=\frac {Q_2}A=\frac{Q_2}{Q_1-Q_2}
w=AQ2=Q1−Q2Q2,
Q
2
Q_2
Q2是低温,
Q
1
Q_1
Q1是高温
特征 | 过程 | 吸热 Q Q Q | 对外做功 A A A | 内能增量 | 摩尔热容 | |
---|---|---|---|---|---|---|
等体过程 | V = V= V=常量 | p T = \frac pT= Tp=常量 | m M C V 1 M ( T 2 − T 1 ) \frac mMC_{V_1M}(T_2-T_1) MmCV1M(T2−T1) | 0 | m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2−T1) | C v = i 2 R C_v=\frac i2R Cv=2iR |
等压过程 | p = p= p=常量 | V T = \frac VT= TV=常量 | m M C p ( T 2 − T 1 ) \frac mMC_p(T_2-T_1) MmCp(T2−T1) | p ( V 2 − V 1 ) = m M R ( T 2 − T 1 ) p(V_2-V_1)=\frac mMR(T_2-T_1) p(V2−V1)=MmR(T2−T1) | m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2−T1) | C p = C v + R C_p=C_v+R Cp=Cv+R |
等温过程 | T = T= T=常量 | p V = pV= pV=常量 | m M R T ln V 2 V 1 = m M R T ln p 1 p 2 \frac mMRT\ln \frac {V_2}{V_1}=\frac mMRT\ln \frac {p_1}{p_2} MmRTlnV1V2=MmRTlnp2p1 | m M R T ln V 2 V 1 = m M R T ln p 1 p 2 \frac mMRT\ln \frac {V_2}{V_1}=\frac mMRT\ln \frac {p_1}{p_2} MmRTlnV1V2=MmRTlnp2p1 | 0 | ∞ \infty ∞ |
绝热过程 | δ Q = 0 \delta Q=0 δQ=0 | γ = i + 2 i P V γ = 常量 V γ − 1 T = 常量 p γ − 1 T γ − 1 = 常量 \gamma=\frac{i+2}{i}\\PV^{\gamma}=常量\\V^{\gamma-1}T=常量\\p^{\gamma-1}T^{\gamma-1}=常量 γ=ii+2PVγ=常量Vγ−1T=常量pγ−1Tγ−1=常量 | 0 | − m M C v ( T 2 − T 1 ) = p 1 V 1 − p 2 V 2 γ − 1 -\frac mMC_v(T_2-T_1)=\frac{p_1V_1-p_2V_2}{\gamma-1} −MmCv(T2−T1)=γ−1p1V1−p2V2 | m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2−T1) | 0 |
p
=
m
M
R
V
T
=
n
k
T
p=\frac mM\frac RVT=nkT
p=MmVRT=nkT,
n
=
N
V
n=\frac NV
n=VN,
k
=
R
N
A
k=\frac{R}{N_A}
k=NAR
ϵ
=
i
2
k
T
\epsilon=\frac i2kT
ϵ=2ikT,
E
=
m
M
i
2
R
T
E=\frac mM\frac i2 RT
E=Mm2iRT
卡诺热机效率
η
=
1
−
T
2
T
1
\eta=1-\frac {T_2}{T_1}
η=1−T1T2,
w
=
T
2
T
1
−
T
2
w=\frac{T_2}{T_1-T_2}
w=T1−T2T2