【大学物理B2】 知识点整理

本文涵盖了光学中的干涉与偏振现象,包括上下光程差的计算和明纹位置的确定。同时,讨论了圆孔衍射的艾里斑、最小分辨角以及光栅衍射的光栅方程。在热学部分,介绍了气体分子速率分布、气体做功的计算以及理想气体状态方程。这些基本概念是物理学中光学与热力学领域的基石。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

光学

干涉与偏振

上下光程差 δ = a sin ⁡ θ = N λ 2 \delta=a\sin\theta=N\frac\lambda 2 δ=asinθ=N2λ,其中 a a a为缝宽, N N N为半波带数
a sin ⁡ θ = { 0 中央明纹 ± ( 2 k + 1 ) λ 2 其他明纹 ( 2 k ) λ 2 暗纹 a\sin\theta=\begin{cases}0&中央明纹\\\pm(2k+1)\frac\lambda 2&其他明纹\\(2k)\frac\lambda 2&暗纹\end{cases} asinθ= 0±(2k+1)2λ(2k)2λ中央明纹其他明纹暗纹 ( k = 1 , 2 , 3 , . . . ) (k=1,2,3,...) (k=1,2,3,...)
中央明纹线宽度 Δ x 0 = 2 f λ a \Delta x_0=2f\frac \lambda a Δx0=2faλ,半角宽度 θ = arcsin ⁡ λ a \theta=\arcsin \frac\lambda a θ=arcsinaλ
第一级明纹线宽度 Δ x = f λ a \Delta x=f\frac\lambda a Δx=faλ
明纹中心位置 x = ± 2 k + 1 2 f λ a x=\pm\frac{2k+1}{2}\frac{f\lambda}{a} x=±22k+1afλ
自然光偏振: I 1 = 1 2 I 0 , I 2 = I 1 cos ⁡ 2 α I_1=\frac 12I_0,I_2=I_1\cos^2\alpha I1=21I0,I2=I1cos2α

圆孔衍射

d d d为圆孔直径
衍射角 sin ⁡ θ 1 = 1.22 λ d \sin\theta_1=1.22\frac \lambda d sinθ1=1.22dλ
第一级暗纹半径(艾里斑) R = 1.22 λ d f R=1.22\frac \lambda df R=1.22dλf, θ = 1.22 λ d \theta=1.22\frac\lambda d θ=1.22dλ
最小分辨角 θ R = θ 1 = 1.22 λ d \theta_R=\theta_1=1.22\frac\lambda d θR=θ1=1.22dλ, R = 1 θ R = 1 1.22 d λ R=\frac 1{\theta_R}=\frac 1{1.22}\frac{d}{\lambda} R=θR1=1.221λd
θ = d L = 1.22 λ D \theta=\frac dL=\frac{1.22\lambda}{D} θ=Ld=D1.22λ,其中 d d d为要分辨的距离, L L L为总距离, λ \lambda λ为波长, D D D为一起直径

光栅衍射

d = a + b d=a+b d=a+b a a a为透光宽度, b b b为不透光宽度)
相邻光束光程差 δ = B C ‾ = d sin ⁡ θ \delta=\overline {BC}=d\sin\theta δ=BC=dsinθ
光栅方程 k λ = d sin ⁡ θ ( k = 0 , ± 1 , ± 2 , . . . ) k\lambda=d\sin\theta(k=0,\pm1,\pm2,...) =dsinθ(k=0,±1,±2,...)
暗纹位置 a sin ⁡ θ = k λ a\sin\theta=k\lambda asinθ=
N d sin ⁡ θ = k λ Nd\sin\theta=k\lambda Ndsinθ=(整个光栅当做大单缝, K = ± N , ± 2 N , ± 3 N K=\pm N,\pm 2N,\pm 3N K=±N,±2N,±3N除外)
相邻主明纹有 N − 1 N-1 N1条暗纹, N − 2 N-2 N2条次明纹
主极大: d sin ⁡ θ = k λ d\sin\theta=k\lambda dsinθ=
缺级: k = a + b a k ′ ′ ( k ′ ′ = ± 1 , ± 2 , . . . , ) k=\frac{a+b}{a}k''(k''=\pm 1,\pm 2,...,) k=aa+bk′′(k′′=±1,±2,...,)

折射

垂直时,反射成完全偏振
sin ⁡ i B sin ⁡ r = n 2 n 1 \frac{\sin i_B}{\sin r}=\frac{n_2}{n_1} sinrsiniB=n1n2
i B + r = π 2 i_B+r=\frac\pi 2 iB+r=2π
tan ⁡ i B = n 2 n 1 \tan i_B=\frac{n_2}{n_1} taniB=n1n2
sin ⁡ r = sin ⁡ ( π 2 − i B ) = cos ⁡ i B \sin r=\sin(\frac\pi 2-i_B)=\cos i_B sinr=sin(2πiB)=cosiB

热学

p V = m M R T = n k T = N N A R V T pV=\frac mMRT=nkT=\frac{N}{N_A}\frac RV T pV=MmRT=nkT=NANVRT
n = N V n=\frac NV n=VN(分子数量密度)
k = R N A k=\frac R{N_A} k=NAR
速率分布函数 f ( v ) = d N n d V f(v)=\frac{dN}{ndV} f(v)=ndVdN, N = ∫ d N = N f ( v ) d v N=\int dN=Nf(v)dv N=dN=Nf(v)dv
∫ f ( v ) d v = 1 \int f(v)dv=1 f(v)dv=1, v ˉ = ∫ v f ( v ) d v \bar v=\int_v f(v)dv vˉ=vf(v)dv

分子速率

v ˉ x 2 = v ˉ y 2 = v ˉ z 2 = 1 3 v ⃗ 2 ˉ \bar v_x^2=\bar v_y^2=\bar v_z^2=\frac 13\bar {\vec v^2} vˉx2=vˉy2=vˉz2=31v 2ˉ
分子平均动能 ϵ k t ˉ = 1 2 m 0 v ˉ 2 \bar {\epsilon_{kt}}=\frac 12m_0\bar v^2 ϵktˉ=21m0vˉ2
压强 = 2 3 n ϵ ˉ k t = n m 0 1 3 v ˉ 2 =\frac 23n\bar\epsilon_{kt}=nm_0\frac 13\bar v^2 =32nϵˉkt=nm031vˉ2
理想气体物态方程 p = n k T p=nkT p=nkT
气体分子平均平动动能 ϵ ˉ k = 2 3 k T = 1 2 m 0 v ˉ 2 , T = 2 ϵ ˉ k t 3 k \bar\epsilon_k=\frac 23kT=\frac 12m_0\bar v^2,T=\frac{2\bar \epsilon_{kt}}{3k} ϵˉk=32kT=21m0vˉ2,T=3k2ϵˉkt
方均根速率 v ˉ 2 = 3 R T M \sqrt{\bar v^2}=\sqrt{\frac{3RT}{M}} vˉ2 =M3RT
分子平均总动能 ϵ ˉ = i 2 k T \bar\epsilon=\frac i2kT ϵˉ=2ikT
内能 E = m M i 2 R T = N i 2 k T E=\frac mM\frac i2RT=N\frac i2kT E=Mm2iRT=N2ikT
最概然速率 v p = 2 R T M v_p=\sqrt{\frac {2RT}M} vp=M2RT
平均速率 v ˉ = 8 R T π M \bar v=\sqrt{\frac {8RT}{\pi M}} vˉ=πM8RT
v p < v ˉ < v ˉ 2 v_p<\bar v<\sqrt{\bar v^2} vp<vˉ<vˉ2
平均碰撞速率 z ˉ = 2 π d 2 v ˉ n \bar z=\sqrt 2\pi d^2\bar vn zˉ=2 πd2vˉn
自由程 λ ˉ = v ˉ z = 1 2 π d 2 n \bar \lambda=\frac{\bar v}z=\frac 1{\sqrt 2\pi d^2n} λˉ=zvˉ=2 πd2n1

气体做功

A = ∫ V 1 V 2 p d V A=\int_{V_1}^{V_2}pdV A=V1V2pdV
膨胀时对外做正功,收缩时对外做负功
内能增量 E = m M i 2 R ( T 2 − T 1 ) E=\frac mM\frac i2R(T_2-T_1) E=Mm2iR(T2T1)
Q = Δ E + A Q=\Delta E+A Q=ΔE+A(系统吸热等于系统内能增量与对外做功之和,热力学第一定律)
热机效率 η = A Q 1 = 1 − Q 2 Q 1 \eta=\frac AQ_1=1-\frac {Q_2}{Q_1} η=QA1=1Q1Q2
制冷系数 w = Q 2 A = Q 2 Q 1 − Q 2 w=\frac {Q_2}A=\frac{Q_2}{Q_1-Q_2} w=AQ2=Q1Q2Q2, Q 2 Q_2 Q2是低温, Q 1 Q_1 Q1是高温

特征过程吸热 Q Q Q对外做功 A A A内能增量摩尔热容
等体过程 V = V= V=常量 p T = \frac pT= Tp=常量 m M C V 1 M ( T 2 − T 1 ) \frac mMC_{V_1M}(T_2-T_1) MmCV1M(T2T1)0 m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2T1) C v = i 2 R C_v=\frac i2R Cv=2iR
等压过程 p = p= p=常量 V T = \frac VT= TV=常量 m M C p ( T 2 − T 1 ) \frac mMC_p(T_2-T_1) MmCp(T2T1) p ( V 2 − V 1 ) = m M R ( T 2 − T 1 ) p(V_2-V_1)=\frac mMR(T_2-T_1) p(V2V1)=MmR(T2T1) m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2T1) C p = C v + R C_p=C_v+R Cp=Cv+R
等温过程 T = T= T=常量 p V = pV= pV=常量 m M R T ln ⁡ V 2 V 1 = m M R T ln ⁡ p 1 p 2 \frac mMRT\ln \frac {V_2}{V_1}=\frac mMRT\ln \frac {p_1}{p_2} MmRTlnV1V2=MmRTlnp2p1 m M R T ln ⁡ V 2 V 1 = m M R T ln ⁡ p 1 p 2 \frac mMRT\ln \frac {V_2}{V_1}=\frac mMRT\ln \frac {p_1}{p_2} MmRTlnV1V2=MmRTlnp2p10 ∞ \infty
绝热过程 δ Q = 0 \delta Q=0 δQ=0 γ = i + 2 i P V γ = 常量 V γ − 1 T = 常量 p γ − 1 T γ − 1 = 常量 \gamma=\frac{i+2}{i}\\PV^{\gamma}=常量\\V^{\gamma-1}T=常量\\p^{\gamma-1}T^{\gamma-1}=常量 γ=ii+2PVγ=常量Vγ1T=常量pγ1Tγ1=常量0 − m M C v ( T 2 − T 1 ) = p 1 V 1 − p 2 V 2 γ − 1 -\frac mMC_v(T_2-T_1)=\frac{p_1V_1-p_2V_2}{\gamma-1} MmCv(T2T1)=γ1p1V1p2V2 m M C v ( T 2 − T 1 ) \frac mMC_v(T_2-T_1) MmCv(T2T1)0

p = m M R V T = n k T p=\frac mM\frac RVT=nkT p=MmVRT=nkT, n = N V n=\frac NV n=VN, k = R N A k=\frac{R}{N_A} k=NAR
ϵ = i 2 k T \epsilon=\frac i2kT ϵ=2ikT, E = m M i 2 R T E=\frac mM\frac i2 RT E=Mm2iRT
卡诺热机效率 η = 1 − T 2 T 1 \eta=1-\frac {T_2}{T_1} η=1T1T2, w = T 2 T 1 − T 2 w=\frac{T_2}{T_1-T_2} w=T1T2T2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zombo_tany

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值