1(1)
{ 0 , 1 , 16 , 81 , . . . , n 4 , . . . } \{0,1,16,81,...,n^4,...\} {0,1,16,81,...,n4,...}
设
G
{
k
(
k
+
1
)
(
k
+
2
)
(
k
+
3
)
}
=
A
(
x
)
G\{k(k+1)(k+2)(k+3)\}=A(x)
G{k(k+1)(k+2)(k+3)}=A(x),则
∫
0
x
t
2
A
(
t
)
d
x
=
∑
k
=
1
∞
∫
0
x
k
(
k
+
1
)
(
k
+
2
)
(
k
+
3
)
t
k
+
2
d
t
=
∑
k
=
1
∞
k
(
k
+
1
)
(
k
+
2
)
x
k
+
3
=
x
3
∑
k
=
1
∞
k
(
k
+
1
)
(
k
+
2
)
x
k
=
x
3
G
{
k
(
k
+
1
)
(
k
+
2
)
}
=
6
x
4
(
1
−
x
)
4
\int^x_0t^2A(t)dx =\sum_{k=1}^{\infty}\int_0^x k(k+1)(k+2)(k+3)t^{k+2}dt\\=\sum_{k=1}^{\infty}k(k+1)(k+2)x^{k+3}\\=x^3\sum_{k=1}^{\infty}k(k+1)(k+2)x^k\\=x^3G\{k(k+1)(k+2)\}\\=\frac{6x^4}{(1-x)^4}
∫0xt2A(t)dx=k=1∑∞∫0xk(k+1)(k+2)(k+3)tk+2dt=k=1∑∞k(k+1)(k+2)xk+3=x3k=1∑∞k(k+1)(k+2)xk=x3G{k(k+1)(k+2)}=(1−x)46x4
所以
x
2
A
(
x
)
=
(
6
x
4
(
1
−
x
)
4
)
′
=
24
x
3
(
1
−
x
)
5
x^2A(x)=(\frac{6x^4}{(1-x)^4})'=\frac{24x^3}{(1-x)^5}
x2A(x)=((1−x)46x4)′=(1−x)524x3
A ( x ) = 24 x ( 1 − x ) 5 A(x)=\frac{24x}{(1-x)^5} A(x)=(1−x)524x
k
(
k
+
1
)
(
k
+
2
)
(
k
+
3
)
=
k
4
+
6
k
3
+
11
k
2
+
6
k
k(k+1)(k+2)(k+3)=k^4+6k^3+11k^2+6k
k(k+1)(k+2)(k+3)=k4+6k3+11k2+6k
G
{
k
4
}
=
G
{
k
(
k
+
1
)
(
k
+
2
)
(
k
+
3
)
}
−
6
G
{
k
3
}
−
11
G
{
k
2
}
−
6
G
{
k
}
=
24
x
(
1
−
x
)
5
−
6
x
3
+
4
x
2
+
x
(
1
−
x
)
4
−
11
x
(
1
+
x
)
(
1
−
x
)
3
−
6
x
(
1
−
x
)
2
=
x
4
+
11
x
3
+
11
x
2
+
x
(
1
−
x
)
5
G\{k^4\}=G\{k(k+1)(k+2)(k+3)\}-6G\{k^3\}-11G\{k^2\}-6G\{k\}\\ =\frac{24x}{(1-x)^5}-6\frac{x^3+4x^2+x}{(1-x)^4}-11\frac{x(1+x)}{(1-x)^3}-6\frac{x}{(1-x)^2}\\ =\frac{x^4 + 11 x^3 + 11 x^2 + x}{(1-x)^5}
G{k4}=G{k(k+1)(k+2)(k+3)}−6G{k3}−11G{k2}−6G{k}=(1−x)524x−6(1−x)4x3+4x2+x−11(1−x)3x(1+x)−6(1−x)2x=(1−x)5x4+11x3+11x2+x
1(2)
{
(
3
3
)
(
4
3
)
,
.
.
.
,
(
n
+
3
3
)
}
\{\binom33\binom43,...,\binom{n+3}{3}\}
{(33)(34),...,(3n+3)}
即
{
(
3
0
)
(
4
1
)
,
.
.
.
,
(
n
+
3
n
)
}
\{\binom30\binom41,...,\binom{n+3}{n}\}
{(03)(14),...,(nn+3)}
k
=
3
,
G
{
(
n
+
3
n
)
}
=
1
(
1
−
x
)
4
k=3,G\{\binom{n+3}{n}\}=\frac{1}{(1-x)^4}
k=3,G{(nn+3)}=(1−x)41
1(3)
{ 1 , 0 , 2 , 0 , 3 , 0 , 4 , 0 , . . . } \{1,0,2,0,3,0,4,0,...\} {1,0,2,0,3,0,4,0,...}
A
(
x
)
=
1
+
0
x
1
+
2
x
2
+
0
x
3
+
3
x
4
+
0
x
4
+
4
x
6
.
.
.
=
1
+
2
x
2
+
3
x
4
+
4
x
6
.
.
.
(
k
+
1
)
x
2
k
.
.
.
A(x)=1+0x^1+2x^2+0x^3+3x^4+0x^4+4x^6...\\=1+2x^2+3x^4+4x^6...(k+1)x^{2k}...
A(x)=1+0x1+2x2+0x3+3x4+0x4+4x6...=1+2x2+3x4+4x6...(k+1)x2k...
利用高中生方法,错位相减,
x
2
A
(
x
)
=
x
2
+
2
x
4
+
3
x
6
.
.
.
(
k
+
1
)
x
2
k
+
2
.
.
.
(
1
−
x
2
)
A
(
x
)
=
1
+
x
2
+
x
4
+
x
6
.
.
.
(
1
−
x
2
)
A
(
x
)
=
1
1
−
x
2
A
(
x
)
=
(
1
1
−
x
2
)
2
x^2A(x)=x^2+2x^4+3x^6...(k+1)x^{2k+2}...\\ (1-x^2)A(x)=1+x^2+x^4+x^6...\\ (1-x^2)A(x)=\frac{1}{1-x^2}\\ A(x)=(\frac{1}{1-x^2})^2
x2A(x)=x2+2x4+3x6...(k+1)x2k+2...(1−x2)A(x)=1+x2+x4+x6...(1−x2)A(x)=1−x21A(x)=(1−x21)2
1(4)
{ 1 , k , k 2 , k 3 , . . . , } \{1,k,k^2,k^3,...,\} {1,k,k2,k3,...,}
A ( x ) = 1 + k x + k 2 x 2 . . . = 1 1 − k x A(x)=1+kx+k^2x^2...=\frac{1}{1-kx} A(x)=1+kx+k2x2...=1−kx1
2(1)
1 4 + 2 4 + . . . + n 4 1^4+2^4+...+n^4 14+24+...+n4
根据1(1)题,
G
{
k
4
}
=
x
4
+
11
x
3
+
11
x
2
+
x
(
1
−
x
)
5
G\{k^4\}=\frac{x^4 + 11 x^3 + 11 x^2 + x}{(1-x)^5}
G{k4}=(1−x)5x4+11x3+11x2+x
此时
a
k
=
k
4
a_k=k^4
ak=k4,令
b
n
=
1
4
+
2
4
+
.
.
.
+
n
4
=
∑
k
=
0
n
a
k
b_n=1^4+2^4+...+n^4=\sum_{k=0}^na_k
bn=14+24+...+n4=∑k=0nak,则
{
b
n
}
\{b_n\}
{bn}生成函数为
B
(
x
)
=
A
(
x
)
1
−
x
=
(
x
+
11
x
2
+
11
x
3
+
x
4
)
(
1
−
x
)
6
=
(
x
+
11
x
2
+
11
x
3
+
x
4
)
∑
n
=
1
∞
(
n
+
5
n
)
x
n
B(x)=\frac{A(x)}{1-x}\\ =\frac{(x+11x^2+11x^3+x^4)}{(1-x)^6}\\ =(x+11x^2+11x^3+x^4)\sum_{n=1}^\infty \binom{n+5}{n}x^n
B(x)=1−xA(x)=(1−x)6(x+11x2+11x3+x4)=(x+11x2+11x3+x4)n=1∑∞(nn+5)xn
比较两边
x
n
x^n
xn的系数,
1
4
+
2
4
+
.
.
.
+
n
4
=
(
n
−
1
+
5
n
−
1
)
+
11
(
n
−
2
+
5
n
−
2
)
+
11
(
n
−
3
+
5
n
−
3
)
+
(
n
−
4
+
5
n
−
4
)
=
(
n
+
4
)
(
n
+
3
)
(
n
+
2
)
(
n
+
1
)
n
120
+
11
(
n
+
3
)
(
n
+
2
)
(
n
+
1
)
n
(
n
−
1
)
120
+
11
(
n
+
2
)
(
n
+
1
)
n
(
n
−
1
)
(
n
−
2
)
120
+
(
n
+
1
)
n
(
n
−
1
)
(
n
−
2
)
(
n
−
3
)
120
=
1
30
n
(
n
+
1
)
(
2
n
+
1
)
(
6
n
3
+
9
n
2
+
n
−
1
)
1^4+2^4+...+n^4\\= \binom{n-1+5}{n-1}+11\binom{n-2+5}{n-2}+11\binom{n-3+5}{n-3}+\binom{n-4+5}{n-4}\\ =\frac{(n+4)(n+3)(n+2)(n+1)n}{120}+11\frac{(n+3)(n+2)(n+1)n(n-1)}{120}+11\frac{(n+2)(n+1)n(n-1)(n-2)}{120}+\frac{(n+1)n(n-1)(n-2)(n-3)}{120}\\ =\frac{1}{30}n(n+1)(2n+1)(6n^3+9n^2+n-1)
14+24+...+n4=(n−1n−1+5)+11(n−2n−2+5)+11(n−3n−3+5)+(n−4n−4+5)=120(n+4)(n+3)(n+2)(n+1)n+11120(n+3)(n+2)(n+1)n(n−1)+11120(n+2)(n+1)n(n−1)(n−2)+120(n+1)n(n−1)(n−2)(n−3)=301n(n+1)(2n+1)(6n3+9n2+n−1)
2(2)
1 × 2 + 2 × 3 + . . . + n × ( n + 1 ) 1\times 2+2\times 3+...+n\times (n+1) 1×2+2×3+...+n×(n+1)
{
n
(
n
+
1
)
}
\{n(n+1)\}
{n(n+1)}的生成函数为
A
(
x
)
=
∑
k
=
0
n
a
k
x
k
A(x)=\sum_{k=0}^na_kx^k
A(x)=k=0∑nakxk
其中
a
k
=
k
(
k
+
1
)
a_k=k(k+1)
ak=k(k+1)
则
∑
k
=
0
n
a
k
x
k
=
2
x
(
1
−
x
)
3
\sum_{k=0}^na_kx^k=\frac{2x}{(1-x)^3}
k=0∑nakxk=(1−x)32x
令
b
n
=
1
×
2
+
2
×
3...
n
×
(
n
+
1
)
b_n=1\times 2+2\times 3...n\times(n+1)
bn=1×2+2×3...n×(n+1),则
b
n
=
∑
k
=
0
n
a
k
b_n=\sum_{k=0}^na_k
bn=k=0∑nak
{
b
n
}
\{b_n\}
{bn}生成函数
B
(
x
)
=
A
(
x
)
1
−
x
=
2
x
(
1
−
x
)
4
=
2
x
∑
i
=
0
n
(
i
+
3
i
)
x
i
B(x)=\frac{A(x)}{1-x}=\frac{2x}{(1-x)^4}\\ =2x\sum_{i=0}^n\binom{i+3}{i}x^i
B(x)=1−xA(x)=(1−x)42x=2xi=0∑n(ii+3)xi
比较两边
x
n
x^n
xn的系数
1 × 2 + 2 × 3... n × ( n + 1 ) = b n = 2 ( n + 2 n − 1 ) = n ( n + 1 ) ( n + 2 ) 3 1\times 2+2\times 3...n\times(n+1)=b_n=2\binom{n+2}{n-1}=\frac{n(n+1)(n+2)}{3} 1×2+2×3...n×(n+1)=bn=2(n−1n+2)=3n(n+1)(n+2)
4
设序列
{
a
n
}
\{a_n\}
{an}的生成函数为
4
−
3
x
(
1
−
x
)
(
1
+
x
−
x
3
)
\frac{4-3x}{(1-x)(1+x-x^3)}
(1−x)(1+x−x3)4−3x,但
b
0
=
a
0
,
b
1
=
a
1
−
a
0
,
.
.
.
,
b
n
=
a
n
−
a
n
−
1
b_0=a_0,b_1=a_1-a_0,...,b_n=a_n-a_{n-1}
b0=a0,b1=a1−a0,...,bn=an−an−1,求序列
{
b
n
}
\{b_n\}
{bn}的生成函数。
∑
k
=
0
n
b
k
=
a
n
\sum_{k=0}^nb_k=a_n
k=0∑nbk=an
A ( x ) = G { a n } = 4 − 3 x ( 1 − x ) ( 1 + x − x 3 ) = G { b n } 1 − x A(x)=G\{a_n\}=\frac{4-3x}{(1-x)(1+x-x^3)}=\frac{G\{b_n\}}{1-x} A(x)=G{an}=(1−x)(1+x−x3)4−3x=1−xG{bn}
G { b n } = 4 − 3 x 1 + x − x 3 G\{b_n\}=\frac{4-3x}{1+x-x^3} G{bn}=1+x−x34−3x
5
已知生成函数
3
−
9
x
1
−
x
−
56
x
2
\frac{3-9x}{1-x-56x^2}
1−x−56x23−9x,求对应的序列
{
a
n
}
\{a_n\}
{an}
3
−
9
x
1
−
x
−
56
x
2
=
3
−
9
x
(
8
x
−
1
)
(
−
7
x
−
1
)
=
a
8
x
−
1
+
b
(
−
7
x
−
1
)
\frac{3-9x}{1-x-56x^2}\\=\frac{3-9x}{(8x-1)(-7x-1)}\\=\frac{a}{8x-1}+\frac{b}{(-7x-1)}
1−x−56x23−9x=(8x−1)(−7x−1)3−9x=8x−1a+(−7x−1)b
解得
=
1
1
−
8
x
+
−
2
−
7
x
−
1
=\frac{1}{1-8x}+\frac{-2}{-7x-1}
=1−8x1+−7x−1−2
a
n
=
1
×
8
n
−
2
×
(
−
7
)
n
a_n=1\times 8^n-2\times (-7)^n
an=1×8n−2×(−7)n
6.
有红,黄,蓝,白球各两个,绿,紫,黑球各3个,从中取出10个球,试问有多少种不同的取法?
M
红
=
M
黄
=
M
蓝
=
M
白
=
{
0
,
1
,
2
}
,
M
绿
=
M
紫
=
M
黑
=
{
0
,
1
,
2
,
3
}
M_{红}=M_{黄}=M_{蓝}=M_{白}=\{0,1,2\},M_{绿}=M_{紫}=M_{黑}=\{0,1,2,3\}
M红=M黄=M蓝=M白={0,1,2},M绿=M紫=M黑={0,1,2,3}
(
1
+
x
+
x
2
)
4
(
1
+
x
+
x
2
+
x
3
)
3
(1+x+x^2)^4(1+x+x^2+x^3)^3
(1+x+x2)4(1+x+x2+x3)3
x
10
x^{10}
x10的系数:678
怎么算出678?
(
1
+
x
+
x
2
)
4
(
1
+
x
+
x
2
+
x
3
)
3
=
(
1
−
x
3
1
−
x
)
4
(
1
−
x
4
1
−
x
)
3
=
(
1
−
x
3
)
4
(
1
−
x
4
)
3
(
1
−
x
)
7
=
(
1
−
x
3
)
4
(
1
−
x
4
)
3
∑
i
=
0
n
(
7
+
i
−
1
i
)
x
i
(1+x+x^2)^4(1+x+x^2+x^3)^3 \\=(\frac{1-x^3}{1-x})^4(\frac{1-x^4}{1-x})^3 \\=\frac{(1-x^3)^4(1-x^4)^3}{(1-x)^7} \\=(1-x^3)^4(1-x^4)^3\sum_{i=0}^n\binom{7+i-1}{i}x^i
(1+x+x2)4(1+x+x2+x3)3=(1−x1−x3)4(1−x1−x4)3=(1−x)7(1−x3)4(1−x4)3=(1−x3)4(1−x4)3i=0∑n(i7+i−1)xi
组合成
x
10
x^{10}
x10
(
7
+
10
−
1
10
)
−
(
4
1
)
(
7
+
7
−
1
7
)
+
(
4
2
)
(
7
+
4
−
1
4
)
−
(
4
3
)
(
7
+
1
−
1
1
)
−
(
3
1
)
(
7
+
6
−
1
6
)
+
(
3
2
)
(
7
+
2
−
1
2
)
+
(
4
1
)
(
3
1
)
(
7
+
3
−
1
3
)
−
(
4
2
)
(
3
1
)
(
7
+
0
−
1
0
)
=
678
\binom{7+10-1}{10}-\binom{4}{1}\binom{7+7-1}{7}+\binom{4}{2}\binom{7+4-1}{4}-\binom{4}{3}\binom{7+1-1}{1}\\-\binom{3}{1}\binom{7+6-1}{6}+\binom{3}{2}\binom{7+2-1}{2} \\+\binom{4}{1}\binom{3}{1}\binom{7+3-1}{3}-\binom{4}{2}\binom{3}{1}\binom{7+0-1}{0} \\=678
(107+10−1)−(14)(77+7−1)+(24)(47+4−1)−(34)(17+1−1)−(13)(67+6−1)+(23)(27+2−1)+(14)(13)(37+3−1)−(24)(13)(07+0−1)=678
7.
口袋中有白球5个,红球3个,黑球2个,每次从中取5个,有多少种取法?
记
M
白
=
{
0
,
1
,
2
,
3
,
4
,
5
}
M_{白}=\{0,1,2,3,4,5\}
M白={0,1,2,3,4,5},
M
红
=
{
0
,
1
,
2
,
3
}
M_{红}=\{0,1,2,3\}
M红={0,1,2,3},
M
黑
=
{
0
,
1
,
2
}
M_{黑}=\{0,1,2\}
M黑={0,1,2}
(
1
+
x
+
x
2
+
x
3
+
x
4
+
x
5
)
(
1
+
x
+
x
2
+
x
3
)
(
1
+
x
+
x
2
)
=
(
1
+
x
+
x
2
+
x
3
+
x
4
+
x
5
)
(
x
5
+
2
x
4
+
3
x
3
+
3
x
2
+
2
x
+
1
)
(1+x+x^2+x^3+x^4+x^5)(1+x+x^2+x^3)(1+x+x^2) \\=(1+x+x^2+x^3+x^4+x^5)(x^5+2x^4+3x^3+3x^2+2x+1)
(1+x+x2+x3+x4+x5)(1+x+x2+x3)(1+x+x2)=(1+x+x2+x3+x4+x5)(x5+2x4+3x3+3x2+2x+1)
x 5 x^5 x5项系数: 1 × 1 + 2 × 1 + 3 × 1 + 3 × 1 + 2 × 1 + 1 × 1 = 12 1\times 1+2\times 1+3\times 1+3\times 1+2\times 1+1\times 1=12 1×1+2×1+3×1+3×1+2×1+1×1=12
8.
求1,3,5,7,9这5个数字组成的
n
n
n位数个数,要求其中3和7出现的次数为偶数,其他数字出现的次数无限制
记
M
1
=
M
5
=
M
9
=
{
0
,
1
,
2
,
.
.
.
,
n
}
M_1=M_5=M_9=\{0,1,2,...,n\}
M1=M5=M9={0,1,2,...,n},
M
3
=
M
7
=
{
0
,
2
,
4
,
.
.
.
,
}
M_3=M_7=\{0,2,4,...,\}
M3=M7={0,2,4,...,}
生成函数:
(
1
+
x
2
2
!
+
x
4
4
!
.
.
.
)
2
(
1
+
x
+
x
2
2
!
.
.
.
)
3
=
e
(
3
x
)
(
e
(
x
)
+
e
(
−
x
)
2
)
2
=
e
(
5
x
)
4
+
e
(
3
x
)
2
+
e
(
x
)
4
=
1
4
∑
n
=
0
∞
(
5
n
+
2
×
3
n
+
1
)
x
n
n
!
(1+\frac{x^2}{2!}+\frac{x^4}{4!}...)^2(1+x+\frac{x^2}{2!}...)^3 \\=e(3x)(\frac{e(x)+e(-x)}{2})^2 \\=\frac{e(5x)}{4}+\frac{e(3x)}{2}+\frac{e(x)}{4} \\=\frac 14\sum_{n=0}^\infty(5^n+2\times 3^n+1)\frac{x^n}{n!}
(1+2!x2+4!x4...)2(1+x+2!x2...)3=e(3x)(2e(x)+e(−x))2=4e(5x)+2e(3x)+4e(x)=41n=0∑∞(5n+2×3n+1)n!xn
其中,
x
n
n
!
\frac{x^n}{n!}
n!xn系数为
a
n
=
1
4
(
5
n
+
2
×
3
n
+
1
)
a_n=\frac 14(5^n+2\times 3^n+1)
an=41(5n+2×3n+1)
9.
用3个1,2个2,5个3这10个数字能构成多少个偶的4位数?
最后一位必定是2,原问题可以转化为:用3个1、1个2、5个3这9个数能构成多少3位数?
M
1
=
{
0
,
1
,
2
,
3
}
,
M
2
=
{
0
,
1
}
,
M
3
=
{
0
,
1
,
2
,
3
,
4
,
5
}
M_1=\{0,1,2,3\},M_2=\{0,1\},M_3=\{0,1,2,3,4,5\}
M1={0,1,2,3},M2={0,1},M3={0,1,2,3,4,5}
(
1
+
x
+
x
2
2
!
+
x
3
3
!
)
(
1
+
x
)
(
1
+
x
+
x
2
2
!
+
x
3
3
!
+
x
4
4
!
+
x
5
5
!
)
(1+x+\frac {x^2}{2!}+\frac{x^3}{3!})(1+x)(1+x+\frac{x^2}{2!}+\frac{x^3}{3!}+\frac{x^4}{4!}+\frac{x^5}{5!})
(1+x+2!x2+3!x3)(1+x)(1+x+2!x2+3!x3+4!x4+5!x5)
x
3
x^3
x3项系数为
20
6
\frac{20}{6}
620,则
x
3
3
!
\frac{x^3}{3!}
3!x3项系数为20,
20个偶四位数
12
把正整数8写成3个非负整数之和,要求 n 1 ≤ 3 , n 2 ≤ 3 , n 3 ≤ 6 n_1\le 3,n_2\le 3,n_3\le 6 n1≤3,n2≤3,n3≤6,有多少种不同方案?
M
n
1
=
M
n
2
=
{
0
,
1
,
2
,
3
}
,
M
n
3
=
{
0
,
1
,
2
,
3
,
4
,
5
,
6
}
M_{n_1}=M_{n_2}=\{0,1,2,3\},M_{n_3}=\{0,1,2,3,4,5,6\}
Mn1=Mn2={0,1,2,3},Mn3={0,1,2,3,4,5,6}
(
1
+
x
+
x
2
+
x
3
)
2
(
1
+
x
+
x
2
+
x
3
+
x
4
+
x
5
+
x
6
)
(1+x+x^2+x^3)^2(1+x+x^2+x^3+x^4+x^5+x^6)
(1+x+x2+x3)2(1+x+x2+x3+x4+x5+x6)
( 1 + 2 x + 3 x 2 + 4 x 3 + 3 x 4 + 2 x 5 + x 6 ) ( 1 + x + x 2 + x 3 + x 4 + x 5 + x 6 ) (1+2x+3x^2+4x^3+3x^4+2x^5+x^6)(1+x+x^2+x^3+x^4+x^5+x^6) (1+2x+3x2+4x3+3x4+2x5+x6)(1+x+x2+x3+x4+x5+x6)
x 8 x^8 x8的系数为:
3 × 1 + 4 × 1 + 3 × 1 + 2 × 1 + 1 × 1 = 13 3\times 1+4\times 1+3\times 1+2\times 1+1\times 1=13 3×1+4×1+3×1+2×1+1×1=13
18
设有砝码重为1g的3个,重为2g的4个,重为4g的2个,则能称出多少种重量?各有多少种方案?
M 1 = { 0 , 1 , 2 , 3 } , M 2 = { 0 , 1 , 2 , 3 , 4 } , M 4 = { 0 , 1 , 2 } M_1=\{0,1,2,3\},M_2=\{0,1,2,3,4\},M_4=\{0,1,2\} M1={0,1,2,3},M2={0,1,2,3,4},M4={0,1,2}
生成函数为
(
1
+
x
+
x
2
+
x
3
)
(
1
+
x
2
+
x
4
+
x
6
+
x
8
)
(
1
+
x
4
+
x
8
)
=
1
+
x
+
2
x
2
+
2
x
3
+
3
x
4
+
3
x
5
+
4
x
6
+
4
x
7
+
5
x
8
+
5
x
9
+
5
x
10
+
5
x
11
+
4
x
12
+
4
x
13
+
3
x
14
+
3
x
15
+
2
x
16
+
2
x
17
+
x
18
+
x
19
(1+x+x^2+x^3)(1+x^2+x^4+x^6+x^8)(1+x^4+x^8) \\=1+x+2x^2+2x^3+3x^4+3x^5+4x^6+4x^7+5x^8+5x^9+5x^{10}+5x^{11}+4x^{12}+4x^{13}+3x^{14}+3x^{15}+2x^{16}+2x^{17}+x^{18}+x^{19}
(1+x+x2+x3)(1+x2+x4+x6+x8)(1+x4+x8)=1+x+2x2+2x3+3x4+3x5+4x6+4x7+5x8+5x9+5x10+5x11+4x12+4x13+3x14+3x15+2x16+2x17+x18+x19
能称出20种重量。
19
求 x 1 + 2 x 2 + 4 x 3 = 21 x_1+2x_2+4x_3=21 x1+2x2+4x3=21的正整数解个数。
x 1 x_1 x1为奇数, M 1 = { 1 , 3 , 5 , . . . , } M_1=\{1,3,5,...,\} M1={1,3,5,...,}
M 2 = { 2 , 4 , . . . , } , M 3 = { 4 , 8 , 12 , . . . , } M_2=\{2,4,...,\},M_3=\{4,8,12,...,\} M2={2,4,...,},M3={4,8,12,...,}
生成函数为
(
x
+
x
3
+
x
5
.
.
.
)
(
x
2
+
x
4
+
x
6
.
.
.
)
(
x
4
+
x
8
.
.
.
)
=
x
7
(
1
+
x
2
+
x
4
.
.
.
)
2
(
1
+
x
4
+
x
8
.
.
.
)
=
x
7
1
(
1
−
x
2
)
2
1
1
−
x
4
=
x
7
1
(
1
−
x
2
)
2
(
1
+
x
2
)
2
(
1
−
x
2
)
2
(
1
−
x
4
)
3
=
x
7
(
1
+
x
2
)
2
(
1
−
x
4
)
3
=
(
x
11
+
2
x
9
+
x
7
)
1
(
1
−
x
4
)
3
=
(
x
11
+
2
x
9
+
x
7
)
∑
k
=
0
∞
(
k
+
2
2
)
x
4
k
(x+x^3+x^5...)(x^2+x^4+x^6...)(x^4+x^8...) \\=x^7(1+x^2+x^4...)^2(1+x^4+x^8...) \\=x^7\frac{1}{(1-x^2)^2}\frac{1}{1-x^4} \\=x^7\frac{1}{(1-x^2)^2}\frac{(1+x^2)^2(1-x^2)^2}{(1-x^4)^3} \\=x^7\frac{(1+x^2)^2}{(1-x^4)^3} \\=(x^{11}+2x^9+x^7)\frac{1}{(1-x^4)^3} \\=(x^{11}+2x^9+x^7)\sum_{k=0}^\infty \binom{k+2}{2}x^{4k}
(x+x3+x5...)(x2+x4+x6...)(x4+x8...)=x7(1+x2+x4...)2(1+x4+x8...)=x7(1−x2)211−x41=x7(1−x2)21(1−x4)3(1+x2)2(1−x2)2=x7(1−x4)3(1+x2)2=(x11+2x9+x7)(1−x4)31=(x11+2x9+x7)k=0∑∞(2k+2)x4k
x
21
x^{21}
x21的系数:
2
x
9
(
5
2
)
x
12
=
20
x
21
2x^9\binom{5}{2}x^{12}=20x^{21}
2x9(25)x12=20x21
正整数解个数20
P66(3) 用生成函数方法做
n
n
n位四进制数中,2和3出现偶数次的序列的数目记为
f
(
n
)
f(n)
f(n),求
f
(
n
)
f(n)
f(n)满足的递推关系
M
2
=
{
0
,
2
,
4
,
.
.
.
,
}
,
M
3
=
{
0
,
2
,
4
,
.
.
.
,
}
,
M
0
=
{
0
,
1
,
2
,
.
.
.
,
}
,
M
1
=
{
0
,
1
,
2
,
.
.
.
,
}
M_2=\{0,2,4,...,\},M_3=\{0,2,4,...,\},M_0=\{0,1,2,...,\},M_1=\{0,1,2,...,\}
M2={0,2,4,...,},M3={0,2,4,...,},M0={0,1,2,...,},M1={0,1,2,...,}
生成函数
(
1
+
x
2
2
!
+
x
4
4
!
.
.
.
)
2
(
1
+
x
+
x
2
2
!
.
.
.
)
2
=
(
e
(
x
)
+
e
(
−
x
)
2
)
2
e
(
2
x
)
=
e
(
2
x
)
e
(
2
x
)
+
2
+
e
(
−
2
x
)
4
=
e
(
4
x
)
+
2
e
(
2
x
)
+
1
4
(1+\frac{x^2}{2!}+\frac{x^4}{4!}...)^2(1+x+\frac{x^2}{2!}...)^2 \\=(\frac{e(x)+e(-x)}{2})^2e(2x) \\=e(2x)\frac{e(2x)+2+e(-2x)}{4} \\=\frac{e(4x)+2e(2x)+1}{4}
(1+2!x2+4!x4...)2(1+x+2!x2...)2=(2e(x)+e(−x))2e(2x)=e(2x)4e(2x)+2+e(−2x)=4e(4x)+2e(2x)+1
其中,
x
n
n
!
\frac{x^n}{n!}
n!xn项系数
a
n
=
1
4
×
4
n
+
1
2
×
2
n
a_n=\frac{1}{4}\times 4^n+\frac{1}{2}\times 2^n
an=41×4n+21×2n
p83 简单变式
从 { n ⋅ a , n ⋅ b , n ⋅ c } \{n\cdot a,n\cdot b,n\cdot c\} {n⋅a,n⋅b,n⋅c}中取出 n n n个字母,要求 a a a的个数为奇数,有多少种取法?
M
a
=
{
1
,
3
,
5
,
.
.
.
}
M_a=\{1,3,5,...\}
Ma={1,3,5,...},
M
b
=
M
c
=
{
0
,
1
,
2
,
.
.
.
,
}
M_b=M_c=\{0,1,2,...,\}
Mb=Mc={0,1,2,...,}
(
x
+
x
3
+
x
5
.
.
.
)
(
1
+
x
+
x
2
.
.
.
)
2
=
x
(
1
+
x
2
+
x
4
.
.
.
)
(
1
+
x
+
x
2
.
.
.
)
2
=
x
1
1
−
x
2
1
(
1
−
x
)
2
=
x
2
(
1
1
+
x
+
1
1
−
x
)
(
1
(
1
−
x
)
2
)
=
x
2
(
1
(
1
+
x
)
(
1
−
x
)
2
+
1
(
1
−
x
)
3
)
=
.
.
.
=
x
8
(
1
1
+
x
+
1
1
−
x
+
2
(
1
−
x
)
2
+
4
(
1
−
x
)
3
)
=
x
8
∑
i
=
0
∞
(
(
−
1
)
i
+
1
+
2
(
i
+
1
i
)
+
4
(
i
+
2
i
)
)
x
i
(x+x^3+x^5...)(1+x+x^2...)^2 \\=x(1+x^2+x^4...)(1+x+x^2...)^2 \\=x\frac{1}{1-x^2}\frac{1}{(1-x)^2} \\=\frac x2(\frac 1{1+x}+\frac 1{1-x})(\frac 1{(1-x)^2}) \\=\frac x2(\frac 1{(1+x)(1-x)^2}+\frac 1{(1-x)^3}) \\=... \\=\frac x8 (\frac 1{1+x}+\frac 1{1-x}+\frac{2}{(1-x)^2}+\frac{4}{(1-x)^3}) \\=\frac x8\sum_{i=0}^\infty ((-1)^i+1+2\binom{i+1}i+4\binom{i+2}{i})x^i
(x+x3+x5...)(1+x+x2...)2=x(1+x2+x4...)(1+x+x2...)2=x1−x21(1−x)21=2x(1+x1+1−x1)((1−x)21)=2x((1+x)(1−x)21+(1−x)31)=...=8x(1+x1+1−x1+(1−x)22+(1−x)34)=8xi=0∑∞((−1)i+1+2(ii+1)+4(ii+2))xi
x
n
x^n
xn系数为
1
8
[
(
−
1
)
n
−
1
+
1
+
2
(
i
−
1
+
1
i
−
1
)
+
4
(
i
−
1
+
2
i
−
1
)
]
=
1
8
[
(
−
1
)
n
−
1
+
1
+
2
n
+
2
n
(
n
+
1
)
]
\frac 18[(-1)^{n-1}+1+2\binom{i-1+1}{i-1}+4\binom{i-1+2}{i-1}] \\=\frac 18[(-1)^{n-1}+1+2n+2n(n+1)]
81[(−1)n−1+1+2(i−1i−1+1)+4(i−1i−1+2)]=81[(−1)n−1+1+2n+2n(n+1)]
P31 6
安排5人去3个学校参观,每个学校至少1人,共有多少种安排方案?
M 1 = M 2 = M 3 = { 1 , 2 , 3 , . . . , } M_1=M_2=M_3=\{1,2,3,...,\} M1=M2=M3={1,2,3,...,}
生成函数为
(
x
1
!
+
x
2
2
!
+
.
.
.
)
3
=
(
e
(
x
)
−
1
)
3
=
e
(
3
x
)
−
3
e
(
2
x
)
+
3
e
(
x
)
−
1
(\frac{x}{1!}+\frac{x^2}{2!}+...)^3=(e(x)-1)^3=e(3x)-3e(2x)+3e(x)-1
(1!x+2!x2+...)3=(e(x)−1)3=e(3x)−3e(2x)+3e(x)−1
x 5 5 ! \frac{x^5}{5!} 5!x5系数: 3 5 − 3 × 2 5 + 3 = 150 3^5-3\times 2^5+3=150 35−3×25+3=150
P31 8
有7种小球,每个小球内有1~7个星星。一次活动中,主办方随机发放礼品盒,每个盒里放两个这样的小球,那么共有多少种这样的礼品盒?
M 1 = M 2 = M 3 = M 4 = M 5 = M 6 = M 7 = { 0 , 1 , 2 , . . . , ∞ } M_1=M_2=M_3=M_4=M_5=M_6=M_7=\{0,1,2,...,\infty\} M1=M2=M3=M4=M5=M6=M7={0,1,2,...,∞}
( 1 + x + x 2 . . . ) 7 = ( 1 1 − x ) 7 = G { ( n + 6 n ) } (1+x+x^2...)^7=(\frac{1}{1-x})^7=G\{\binom{n+6}{n}\} (1+x+x2...)7=(1−x1)7=G{(nn+6)}
n = 2 , ( 8 2 ) = 28 n=2,\binom{8}{2}=28 n=2,(28)=28